CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
Input: raspberrypi-ts - fix refcount leak in rpi_ts_probe
rpi_firmware_get() take reference, we need to release it in error paths
as well. Use devm_rpi_firmware_get() helper to handling the resources.
Also remove the existing rpi_firmware_put(). |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt76x0: fix oob access in mt76x0_phy_get_target_power
After 'commit ba45841ca5eb ("wifi: mt76: mt76x02: simplify struct
mt76x02_rate_power")', mt76x02 relies on ht[0-7] rate_power data for
vht mcs{0,7}, while it uses vth[0-1] rate_power for vht mcs {8,9}.
Fix a possible out-of-bound access in mt76x0_phy_get_target_power routine. |
In the Linux kernel, the following vulnerability has been resolved:
dm cache: Fix UAF in destroy()
Dm_cache also has the same UAF problem when dm_resume()
and dm_destroy() are concurrent.
Therefore, cancelling timer again in destroy(). |
In the Linux kernel, the following vulnerability has been resolved:
mm/ksm: fix race with VMA iteration and mm_struct teardown
exit_mmap() will tear down the VMAs and maple tree with the mmap_lock held
in write mode. Ensure that the maple tree is still valid by checking
ksm_test_exit() after taking the mmap_lock in read mode, but before the
for_each_vma() iterator dereferences a destroyed maple tree.
Since the maple tree is destroyed, the flags telling lockdep to check an
external lock has been cleared. Skip the for_each_vma() iterator to avoid
dereferencing a maple tree without the external lock flag, which would
create a lockdep warning. |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential UAF of struct nilfs_sc_info in nilfs_segctor_thread()
The finalization of nilfs_segctor_thread() can race with
nilfs_segctor_kill_thread() which terminates that thread, potentially
causing a use-after-free BUG as KASAN detected.
At the end of nilfs_segctor_thread(), it assigns NULL to "sc_task" member
of "struct nilfs_sc_info" to indicate the thread has finished, and then
notifies nilfs_segctor_kill_thread() of this using waitqueue
"sc_wait_task" on the struct nilfs_sc_info.
However, here, immediately after the NULL assignment to "sc_task", it is
possible that nilfs_segctor_kill_thread() will detect it and return to
continue the deallocation, freeing the nilfs_sc_info structure before the
thread does the notification.
This fixes the issue by protecting the NULL assignment to "sc_task" and
its notification, with spinlock "sc_state_lock" of the struct
nilfs_sc_info. Since nilfs_segctor_kill_thread() does a final check to
see if "sc_task" is NULL with "sc_state_lock" locked, this can eliminate
the race. |
In the Linux kernel, the following vulnerability has been resolved:
drm: amd: display: Fix memory leakage
This commit fixes memory leakage in dc_construct_ctx() function. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix memory leak in WMI firmware stats
Memory allocated for firmware pdev, vdev and beacon statistics
are not released during rmmod.
Fix it by calling ath11k_fw_stats_free() function before hardware
unregister.
While at it, avoid calling ath11k_fw_stats_free() while processing
the firmware stats received in the WMI event because the local list
is getting spliced and reinitialised and hence there are no elements
in the list after splicing.
Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
octeontx2-pf: mcs: Fix NULL pointer dereferences
When system is rebooted after creating macsec interface
below NULL pointer dereference crashes occurred. This
patch fixes those crashes by using correct order of teardown
[ 3324.406942] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
[ 3324.415726] Mem abort info:
[ 3324.418510] ESR = 0x96000006
[ 3324.421557] EC = 0x25: DABT (current EL), IL = 32 bits
[ 3324.426865] SET = 0, FnV = 0
[ 3324.429913] EA = 0, S1PTW = 0
[ 3324.433047] Data abort info:
[ 3324.435921] ISV = 0, ISS = 0x00000006
[ 3324.439748] CM = 0, WnR = 0
....
[ 3324.575915] Call trace:
[ 3324.578353] cn10k_mdo_del_secy+0x24/0x180
[ 3324.582440] macsec_common_dellink+0xec/0x120
[ 3324.586788] macsec_notify+0x17c/0x1c0
[ 3324.590529] raw_notifier_call_chain+0x50/0x70
[ 3324.594965] call_netdevice_notifiers_info+0x34/0x7c
[ 3324.599921] rollback_registered_many+0x354/0x5bc
[ 3324.604616] unregister_netdevice_queue+0x88/0x10c
[ 3324.609399] unregister_netdev+0x20/0x30
[ 3324.613313] otx2_remove+0x8c/0x310
[ 3324.616794] pci_device_shutdown+0x30/0x70
[ 3324.620882] device_shutdown+0x11c/0x204
[ 966.664930] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
[ 966.673712] Mem abort info:
[ 966.676497] ESR = 0x96000006
[ 966.679543] EC = 0x25: DABT (current EL), IL = 32 bits
[ 966.684848] SET = 0, FnV = 0
[ 966.687895] EA = 0, S1PTW = 0
[ 966.691028] Data abort info:
[ 966.693900] ISV = 0, ISS = 0x00000006
[ 966.697729] CM = 0, WnR = 0
[ 966.833467] Call trace:
[ 966.835904] cn10k_mdo_stop+0x20/0xa0
[ 966.839557] macsec_dev_stop+0xe8/0x11c
[ 966.843384] __dev_close_many+0xbc/0x140
[ 966.847298] dev_close_many+0x84/0x120
[ 966.851039] rollback_registered_many+0x114/0x5bc
[ 966.855735] unregister_netdevice_many.part.0+0x14/0xa0
[ 966.860952] unregister_netdevice_many+0x18/0x24
[ 966.865560] macsec_notify+0x1ac/0x1c0
[ 966.869303] raw_notifier_call_chain+0x50/0x70
[ 966.873738] call_netdevice_notifiers_info+0x34/0x7c
[ 966.878694] rollback_registered_many+0x354/0x5bc
[ 966.883390] unregister_netdevice_queue+0x88/0x10c
[ 966.888173] unregister_netdev+0x20/0x30
[ 966.892090] otx2_remove+0x8c/0x310
[ 966.895571] pci_device_shutdown+0x30/0x70
[ 966.899660] device_shutdown+0x11c/0x204
[ 966.903574] __do_sys_reboot+0x208/0x290
[ 966.907487] __arm64_sys_reboot+0x20/0x30
[ 966.911489] el0_svc_handler+0x80/0x1c0
[ 966.915316] el0_svc+0x8/0x180
[ 966.918362] Code: f9400000 f9400a64 91220014 f94b3403 (f9400060)
[ 966.924448] ---[ end trace 341778e799c3d8d7 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
sctp: add a refcnt in sctp_stream_priorities to avoid a nested loop
With this refcnt added in sctp_stream_priorities, we don't need to
traverse all streams to check if the prio is used by other streams
when freeing one stream's prio in sctp_sched_prio_free_sid(). This
can avoid a nested loop (up to 65535 * 65535), which may cause a
stuck as Ying reported:
watchdog: BUG: soft lockup - CPU#23 stuck for 26s! [ksoftirqd/23:136]
Call Trace:
<TASK>
sctp_sched_prio_free_sid+0xab/0x100 [sctp]
sctp_stream_free_ext+0x64/0xa0 [sctp]
sctp_stream_free+0x31/0x50 [sctp]
sctp_association_free+0xa5/0x200 [sctp]
Note that it doesn't need to use refcount_t type for this counter,
as its accessing is always protected under the sock lock.
v1->v2:
- add a check in sctp_sched_prio_set to avoid the possible prio_head
refcnt overflow. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: Fix multiple LUN_RESET handling
This fixes a bug where an initiator thinks a LUN_RESET has cleaned up
running commands when it hasn't. The bug was added in commit 51ec502a3266
("target: Delete tmr from list before processing").
The problem occurs when:
1. We have N I/O cmds running in the target layer spread over 2 sessions.
2. The initiator sends a LUN_RESET for each session.
3. session1's LUN_RESET loops over all the running commands from both
sessions and moves them to its local drain_task_list.
4. session2's LUN_RESET does not see the LUN_RESET from session1 because
the commit above has it remove itself. session2 also does not see any
commands since the other reset moved them off the state lists.
5. sessions2's LUN_RESET will then complete with a successful response.
6. sessions2's inititor believes the running commands on its session are
now cleaned up due to the successful response and cleans up the running
commands from its side. It then restarts them.
7. The commands do eventually complete on the backend and the target
starts to return aborted task statuses for them. The initiator will
either throw a invalid ITT error or might accidentally lookup a new
task if the ITT has been reallocated already.
Fix the bug by reverting the patch, and serialize the execution of
LUN_RESETs and Preempt and Aborts.
Also prevent us from waiting on LUN_RESETs in core_tmr_drain_tmr_list,
because it turns out the original patch fixed a bug that was not
mentioned. For LUN_RESET1 core_tmr_drain_tmr_list can see a second
LUN_RESET and wait on it. Then the second reset will run
core_tmr_drain_tmr_list and see the first reset and wait on it resulting in
a deadlock. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: ensure CLM version is null-terminated to prevent stack-out-of-bounds
Fix a stack-out-of-bounds read in brcmfmac that occurs
when 'buf' that is not null-terminated is passed as an argument of
strreplace() in brcmf_c_preinit_dcmds(). This buffer is filled with
a CLM version string by memcpy() in brcmf_fil_iovar_data_get().
Ensure buf is null-terminated.
Found by a modified version of syzkaller.
[ 33.004414][ T1896] brcmfmac: brcmf_c_process_clm_blob: no clm_blob available (err=-2), device may have limited channels available
[ 33.013486][ T1896] brcmfmac: brcmf_c_preinit_dcmds: Firmware: BCM43236/3 wl0: Nov 30 2011 17:33:42 version 5.90.188.22
[ 33.021554][ T1896] ==================================================================
[ 33.022379][ T1896] BUG: KASAN: stack-out-of-bounds in strreplace+0xf2/0x110
[ 33.023122][ T1896] Read of size 1 at addr ffffc90001d6efc8 by task kworker/0:2/1896
[ 33.023852][ T1896]
[ 33.024096][ T1896] CPU: 0 PID: 1896 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132
[ 33.024927][ T1896] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
[ 33.026065][ T1896] Workqueue: usb_hub_wq hub_event
[ 33.026581][ T1896] Call Trace:
[ 33.026896][ T1896] dump_stack_lvl+0x57/0x7d
[ 33.027372][ T1896] print_address_description.constprop.0.cold+0xf/0x334
[ 33.028037][ T1896] ? strreplace+0xf2/0x110
[ 33.028403][ T1896] ? strreplace+0xf2/0x110
[ 33.028807][ T1896] kasan_report.cold+0x83/0xdf
[ 33.029283][ T1896] ? strreplace+0xf2/0x110
[ 33.029666][ T1896] strreplace+0xf2/0x110
[ 33.029966][ T1896] brcmf_c_preinit_dcmds+0xab1/0xc40
[ 33.030351][ T1896] ? brcmf_c_set_joinpref_default+0x100/0x100
[ 33.030787][ T1896] ? rcu_read_lock_sched_held+0xa1/0xd0
[ 33.031223][ T1896] ? rcu_read_lock_bh_held+0xb0/0xb0
[ 33.031661][ T1896] ? lock_acquire+0x19d/0x4e0
[ 33.032091][ T1896] ? find_held_lock+0x2d/0x110
[ 33.032605][ T1896] ? brcmf_usb_deq+0x1a7/0x260
[ 33.033087][ T1896] ? brcmf_usb_rx_fill_all+0x5a/0xf0
[ 33.033582][ T1896] brcmf_attach+0x246/0xd40
[ 33.034022][ T1896] ? wiphy_new_nm+0x1476/0x1d50
[ 33.034383][ T1896] ? kmemdup+0x30/0x40
[ 33.034722][ T1896] brcmf_usb_probe+0x12de/0x1690
[ 33.035223][ T1896] ? brcmf_usbdev_qinit.constprop.0+0x470/0x470
[ 33.035833][ T1896] usb_probe_interface+0x25f/0x710
[ 33.036315][ T1896] really_probe+0x1be/0xa90
[ 33.036656][ T1896] __driver_probe_device+0x2ab/0x460
[ 33.037026][ T1896] ? usb_match_id.part.0+0x88/0xc0
[ 33.037383][ T1896] driver_probe_device+0x49/0x120
[ 33.037790][ T1896] __device_attach_driver+0x18a/0x250
[ 33.038300][ T1896] ? driver_allows_async_probing+0x120/0x120
[ 33.038986][ T1896] bus_for_each_drv+0x123/0x1a0
[ 33.039906][ T1896] ? bus_rescan_devices+0x20/0x20
[ 33.041412][ T1896] ? lockdep_hardirqs_on_prepare+0x273/0x3e0
[ 33.041861][ T1896] ? trace_hardirqs_on+0x1c/0x120
[ 33.042330][ T1896] __device_attach+0x207/0x330
[ 33.042664][ T1896] ? device_bind_driver+0xb0/0xb0
[ 33.043026][ T1896] ? kobject_uevent_env+0x230/0x12c0
[ 33.043515][ T1896] bus_probe_device+0x1a2/0x260
[ 33.043914][ T1896] device_add+0xa61/0x1ce0
[ 33.044227][ T1896] ? __mutex_unlock_slowpath+0xe7/0x660
[ 33.044891][ T1896] ? __fw_devlink_link_to_suppliers+0x550/0x550
[ 33.045531][ T1896] usb_set_configuration+0x984/0x1770
[ 33.046051][ T1896] ? kernfs_create_link+0x175/0x230
[ 33.046548][ T1896] usb_generic_driver_probe+0x69/0x90
[ 33.046931][ T1896] usb_probe_device+0x9c/0x220
[ 33.047434][ T1896] really_probe+0x1be/0xa90
[ 33.047760][ T1896] __driver_probe_device+0x2ab/0x460
[ 33.048134][ T1896] driver_probe_device+0x49/0x120
[ 33.048516][ T1896] __device_attach_driver+0x18a/0x250
[ 33.048910][ T1896] ? driver_allows_async_probing+0x120/0x120
---truncated--- |
Flowise before 3.0.5 allows XSS via a FORM element and an INPUT element when an admin views the chat log. |
JavaScript can be ran inside the address bar via the dashboard "Open in new Tab" Button, making the application vulnerable to session hijacking. |
The credentials of the users stored in the system's local database can be used for the log in, making it possible for an attacker to gain unauthorized access. This could potentially affect the confidentiality of the application. |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Make intel_get_crtc_new_encoder() less oopsy
The point of the WARN was to print something, not oops
straight up. Currently that is precisely what happens
if we can't find the connector for the crtc in the atomic
state. Get the dev pointer from the atomic state instead
of the potentially NULL encoder to avoid that.
(cherry picked from commit 3b6692357f70498f617ea1b31a0378070a0acf1c) |
A user with the appropriate authorization can create any number of user accounts via an API endpoint using a POST request. There are no quotas, checking mechanisms or restrictions to limit the creation. |
In the Linux kernel, the following vulnerability has been resolved:
dm integrity: call kmem_cache_destroy() in dm_integrity_init() error path
Otherwise the journal_io_cache will leak if dm_register_target() fails. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix deletion race condition
System crash when using debug kernel due to link list corruption. The cause
of the link list corruption is due to session deletion was allowed to queue
up twice. Here's the internal trace that show the same port was allowed to
double queue for deletion on different cpu.
20808683956 015 qla2xxx [0000:13:00.1]-e801:4: Scheduling sess ffff93ebf9306800 for deletion 50:06:0e:80:12:48:ff:50 fc4_type 1
20808683957 027 qla2xxx [0000:13:00.1]-e801:4: Scheduling sess ffff93ebf9306800 for deletion 50:06:0e:80:12:48:ff:50 fc4_type 1
Move the clearing/setting of deleted flag lock. |
In the Linux kernel, the following vulnerability has been resolved:
binfmt_misc: fix shift-out-of-bounds in check_special_flags
UBSAN reported a shift-out-of-bounds warning:
left shift of 1 by 31 places cannot be represented in type 'int'
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x8d/0xcf lib/dump_stack.c:106
ubsan_epilogue+0xa/0x44 lib/ubsan.c:151
__ubsan_handle_shift_out_of_bounds+0x1e7/0x208 lib/ubsan.c:322
check_special_flags fs/binfmt_misc.c:241 [inline]
create_entry fs/binfmt_misc.c:456 [inline]
bm_register_write+0x9d3/0xa20 fs/binfmt_misc.c:654
vfs_write+0x11e/0x580 fs/read_write.c:582
ksys_write+0xcf/0x120 fs/read_write.c:637
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x34/0x80 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x4194e1
Since the type of Node's flags is unsigned long, we should define these
macros with same type too. |
In the Linux kernel, the following vulnerability has been resolved:
tracing/histograms: Add histograms to hist_vars if they have referenced variables
Hist triggers can have referenced variables without having direct
variables fields. This can be the case if referenced variables are added
for trigger actions. In this case the newly added references will not
have field variables. Not taking such referenced variables into
consideration can result in a bug where it would be possible to remove
hist trigger with variables being refenced. This will result in a bug
that is easily reproducable like so
$ cd /sys/kernel/tracing
$ echo 'synthetic_sys_enter char[] comm; long id' >> synthetic_events
$ echo 'hist:keys=common_pid.execname,id.syscall:vals=hitcount:comm=common_pid.execname' >> events/raw_syscalls/sys_enter/trigger
$ echo 'hist:keys=common_pid.execname,id.syscall:onmatch(raw_syscalls.sys_enter).synthetic_sys_enter($comm, id)' >> events/raw_syscalls/sys_enter/trigger
$ echo '!hist:keys=common_pid.execname,id.syscall:vals=hitcount:comm=common_pid.execname' >> events/raw_syscalls/sys_enter/trigger
[ 100.263533] ==================================================================
[ 100.264634] BUG: KASAN: slab-use-after-free in resolve_var_refs+0xc7/0x180
[ 100.265520] Read of size 8 at addr ffff88810375d0f0 by task bash/439
[ 100.266320]
[ 100.266533] CPU: 2 PID: 439 Comm: bash Not tainted 6.5.0-rc1 #4
[ 100.267277] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-20220807_005459-localhost 04/01/2014
[ 100.268561] Call Trace:
[ 100.268902] <TASK>
[ 100.269189] dump_stack_lvl+0x4c/0x70
[ 100.269680] print_report+0xc5/0x600
[ 100.270165] ? resolve_var_refs+0xc7/0x180
[ 100.270697] ? kasan_complete_mode_report_info+0x80/0x1f0
[ 100.271389] ? resolve_var_refs+0xc7/0x180
[ 100.271913] kasan_report+0xbd/0x100
[ 100.272380] ? resolve_var_refs+0xc7/0x180
[ 100.272920] __asan_load8+0x71/0xa0
[ 100.273377] resolve_var_refs+0xc7/0x180
[ 100.273888] event_hist_trigger+0x749/0x860
[ 100.274505] ? kasan_save_stack+0x2a/0x50
[ 100.275024] ? kasan_set_track+0x29/0x40
[ 100.275536] ? __pfx_event_hist_trigger+0x10/0x10
[ 100.276138] ? ksys_write+0xd1/0x170
[ 100.276607] ? do_syscall_64+0x3c/0x90
[ 100.277099] ? entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 100.277771] ? destroy_hist_data+0x446/0x470
[ 100.278324] ? event_hist_trigger_parse+0xa6c/0x3860
[ 100.278962] ? __pfx_event_hist_trigger_parse+0x10/0x10
[ 100.279627] ? __kasan_check_write+0x18/0x20
[ 100.280177] ? mutex_unlock+0x85/0xd0
[ 100.280660] ? __pfx_mutex_unlock+0x10/0x10
[ 100.281200] ? kfree+0x7b/0x120
[ 100.281619] ? ____kasan_slab_free+0x15d/0x1d0
[ 100.282197] ? event_trigger_write+0xac/0x100
[ 100.282764] ? __kasan_slab_free+0x16/0x20
[ 100.283293] ? __kmem_cache_free+0x153/0x2f0
[ 100.283844] ? sched_mm_cid_remote_clear+0xb1/0x250
[ 100.284550] ? __pfx_sched_mm_cid_remote_clear+0x10/0x10
[ 100.285221] ? event_trigger_write+0xbc/0x100
[ 100.285781] ? __kasan_check_read+0x15/0x20
[ 100.286321] ? __bitmap_weight+0x66/0xa0
[ 100.286833] ? _find_next_bit+0x46/0xe0
[ 100.287334] ? task_mm_cid_work+0x37f/0x450
[ 100.287872] event_triggers_call+0x84/0x150
[ 100.288408] trace_event_buffer_commit+0x339/0x430
[ 100.289073] ? ring_buffer_event_data+0x3f/0x60
[ 100.292189] trace_event_raw_event_sys_enter+0x8b/0xe0
[ 100.295434] syscall_trace_enter.constprop.0+0x18f/0x1b0
[ 100.298653] syscall_enter_from_user_mode+0x32/0x40
[ 100.301808] do_syscall_64+0x1a/0x90
[ 100.304748] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 100.307775] RIP: 0033:0x7f686c75c1cb
[ 100.310617] Code: 73 01 c3 48 8b 0d 65 3c 10 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 21 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 35 3c 10 00 f7 d8 64 89 01 48
[ 100.317847] RSP: 002b:00007ffc60137a38 EFLAGS: 00000246 ORIG_RAX: 0000000000000021
[ 100.321200] RA
---truncated--- |