CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/hdmi: fix memory corruption with too many bridges
Add the missing sanity check on the bridge counter to avoid corrupting
data beyond the fixed-sized bridge array in case there are ever more
than eight bridges.
Patchwork: https://patchwork.freedesktop.org/patch/502670/ |
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Validate buffer length while parsing index
indx_read is called when we have some NTFS directory operations that
need more information from the index buffers. This adds a sanity check
to make sure the returned index buffer length is legit, or we may have
some out-of-bound memory accesses.
[ 560.897595] BUG: KASAN: slab-out-of-bounds in hdr_find_e.isra.0+0x10c/0x320
[ 560.898321] Read of size 2 at addr ffff888009497238 by task exp/245
[ 560.898760]
[ 560.899129] CPU: 0 PID: 245 Comm: exp Not tainted 6.0.0-rc6 #37
[ 560.899505] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 560.900170] Call Trace:
[ 560.900407] <TASK>
[ 560.900732] dump_stack_lvl+0x49/0x63
[ 560.901108] print_report.cold+0xf5/0x689
[ 560.901395] ? hdr_find_e.isra.0+0x10c/0x320
[ 560.901716] kasan_report+0xa7/0x130
[ 560.901950] ? hdr_find_e.isra.0+0x10c/0x320
[ 560.902208] __asan_load2+0x68/0x90
[ 560.902427] hdr_find_e.isra.0+0x10c/0x320
[ 560.902846] ? cmp_uints+0xe0/0xe0
[ 560.903363] ? cmp_sdh+0x90/0x90
[ 560.903883] ? ntfs_bread_run+0x190/0x190
[ 560.904196] ? rwsem_down_read_slowpath+0x750/0x750
[ 560.904969] ? ntfs_fix_post_read+0xe0/0x130
[ 560.905259] ? __kasan_check_write+0x14/0x20
[ 560.905599] ? up_read+0x1a/0x90
[ 560.905853] ? indx_read+0x22c/0x380
[ 560.906096] indx_find+0x2ef/0x470
[ 560.906352] ? indx_find_buffer+0x2d0/0x2d0
[ 560.906692] ? __kasan_kmalloc+0x88/0xb0
[ 560.906977] dir_search_u+0x196/0x2f0
[ 560.907220] ? ntfs_nls_to_utf16+0x450/0x450
[ 560.907464] ? __kasan_check_write+0x14/0x20
[ 560.907747] ? mutex_lock+0x8f/0xe0
[ 560.907970] ? __mutex_lock_slowpath+0x20/0x20
[ 560.908214] ? kmem_cache_alloc+0x143/0x4b0
[ 560.908459] ntfs_lookup+0xe0/0x100
[ 560.908788] __lookup_slow+0x116/0x220
[ 560.909050] ? lookup_fast+0x1b0/0x1b0
[ 560.909309] ? lookup_fast+0x13f/0x1b0
[ 560.909601] walk_component+0x187/0x230
[ 560.909944] link_path_walk.part.0+0x3f0/0x660
[ 560.910285] ? handle_lookup_down+0x90/0x90
[ 560.910618] ? path_init+0x642/0x6e0
[ 560.911084] ? percpu_counter_add_batch+0x6e/0xf0
[ 560.912559] ? __alloc_file+0x114/0x170
[ 560.913008] path_openat+0x19c/0x1d10
[ 560.913419] ? getname_flags+0x73/0x2b0
[ 560.913815] ? kasan_save_stack+0x3a/0x50
[ 560.914125] ? kasan_save_stack+0x26/0x50
[ 560.914542] ? __kasan_slab_alloc+0x6d/0x90
[ 560.914924] ? kmem_cache_alloc+0x143/0x4b0
[ 560.915339] ? getname_flags+0x73/0x2b0
[ 560.915647] ? getname+0x12/0x20
[ 560.916114] ? __x64_sys_open+0x4c/0x60
[ 560.916460] ? path_lookupat.isra.0+0x230/0x230
[ 560.916867] ? __isolate_free_page+0x2e0/0x2e0
[ 560.917194] do_filp_open+0x15c/0x1f0
[ 560.917448] ? may_open_dev+0x60/0x60
[ 560.917696] ? expand_files+0xa4/0x3a0
[ 560.917923] ? __kasan_check_write+0x14/0x20
[ 560.918185] ? _raw_spin_lock+0x88/0xdb
[ 560.918409] ? _raw_spin_lock_irqsave+0x100/0x100
[ 560.918783] ? _find_next_bit+0x4a/0x130
[ 560.919026] ? _raw_spin_unlock+0x19/0x40
[ 560.919276] ? alloc_fd+0x14b/0x2d0
[ 560.919635] do_sys_openat2+0x32a/0x4b0
[ 560.920035] ? file_open_root+0x230/0x230
[ 560.920336] ? __rcu_read_unlock+0x5b/0x280
[ 560.920813] do_sys_open+0x99/0xf0
[ 560.921208] ? filp_open+0x60/0x60
[ 560.921482] ? exit_to_user_mode_prepare+0x49/0x180
[ 560.921867] __x64_sys_open+0x4c/0x60
[ 560.922128] do_syscall_64+0x3b/0x90
[ 560.922369] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 560.923030] RIP: 0033:0x7f7dff2e4469
[ 560.923681] Code: 00 f3 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 088
[ 560.924451] RSP: 002b:00007ffd41a210b8 EFLAGS: 00000206 ORIG_RAX: 0000000000000002
[ 560.925168] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f7dff2e4469
[ 560.925655] RDX: 0000000000000000 RSI: 0000000000000002 RDI:
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
soundwire: qcom: fix storing port config out-of-bounds
The 'qcom_swrm_ctrl->pconfig' has size of QCOM_SDW_MAX_PORTS (14),
however we index it starting from 1, not 0, to match real port numbers.
This can lead to writing port config past 'pconfig' bounds and
overwriting next member of 'qcom_swrm_ctrl' struct. Reported also by
smatch:
drivers/soundwire/qcom.c:1269 qcom_swrm_get_port_config() error: buffer overflow 'ctrl->pconfig' 14 <= 14 |
In the Linux kernel, the following vulnerability has been resolved:
scsi: iscsi_tcp: Check that sock is valid before iscsi_set_param()
The validity of sock should be checked before assignment to avoid incorrect
values. Commit 57569c37f0ad ("scsi: iscsi: iscsi_tcp: Fix null-ptr-deref
while calling getpeername()") introduced this change which may lead to
inconsistent values of tcp_sw_conn->sendpage and conn->datadgst_en.
Fix the issue by moving the position of the assignment. |
In the Linux kernel, the following vulnerability has been resolved:
iw_cxgb4: Fix potential NULL dereference in c4iw_fill_res_cm_id_entry()
This condition needs to match the previous "if (epcp->state == LISTEN) {"
exactly to avoid a NULL dereference of either "listen_ep" or "ep". The
problem is that "epcp" has been re-assigned so just testing
"if (epcp->state == LISTEN) {" a second time is not sufficient. |
In the Linux kernel, the following vulnerability has been resolved:
kobject: Add sanity check for kset->kobj.ktype in kset_register()
When I register a kset in the following way:
static struct kset my_kset;
kobject_set_name(&my_kset.kobj, "my_kset");
ret = kset_register(&my_kset);
A null pointer dereference exception is occurred:
[ 4453.568337] Unable to handle kernel NULL pointer dereference at \
virtual address 0000000000000028
... ...
[ 4453.810361] Call trace:
[ 4453.813062] kobject_get_ownership+0xc/0x34
[ 4453.817493] kobject_add_internal+0x98/0x274
[ 4453.822005] kset_register+0x5c/0xb4
[ 4453.825820] my_kobj_init+0x44/0x1000 [my_kset]
... ...
Because I didn't initialize my_kset.kobj.ktype.
According to the description in Documentation/core-api/kobject.rst:
- A ktype is the type of object that embeds a kobject. Every structure
that embeds a kobject needs a corresponding ktype.
So add sanity check to make sure kset->kobj.ktype is not NULL. |
In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/hpre - fix resource leak in remove process
In hpre_remove(), when the disable operation of qm sriov failed,
the following logic should continue to be executed to release the
remaining resources that have been allocated, instead of returning
directly, otherwise there will be resource leakage. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid crash when inline data creation follows DIO write
When inode is created and written to using direct IO, there is nothing
to clear the EXT4_STATE_MAY_INLINE_DATA flag. Thus when inode gets
truncated later to say 1 byte and written using normal write, we will
try to store the data as inline data. This confuses the code later
because the inode now has both normal block and inline data allocated
and the confusion manifests for example as:
kernel BUG at fs/ext4/inode.c:2721!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 359 Comm: repro Not tainted 5.19.0-rc8-00001-g31ba1e3b8305-dirty #15
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014
RIP: 0010:ext4_writepages+0x363d/0x3660
RSP: 0018:ffffc90000ccf260 EFLAGS: 00010293
RAX: ffffffff81e1abcd RBX: 0000008000000000 RCX: ffff88810842a180
RDX: 0000000000000000 RSI: 0000008000000000 RDI: 0000000000000000
RBP: ffffc90000ccf650 R08: ffffffff81e17d58 R09: ffffed10222c680b
R10: dfffe910222c680c R11: 1ffff110222c680a R12: ffff888111634128
R13: ffffc90000ccf880 R14: 0000008410000000 R15: 0000000000000001
FS: 00007f72635d2640(0000) GS:ffff88811b000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000565243379180 CR3: 000000010aa74000 CR4: 0000000000150eb0
Call Trace:
<TASK>
do_writepages+0x397/0x640
filemap_fdatawrite_wbc+0x151/0x1b0
file_write_and_wait_range+0x1c9/0x2b0
ext4_sync_file+0x19e/0xa00
vfs_fsync_range+0x17b/0x190
ext4_buffered_write_iter+0x488/0x530
ext4_file_write_iter+0x449/0x1b90
vfs_write+0xbcd/0xf40
ksys_write+0x198/0x2c0
__x64_sys_write+0x7b/0x90
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
Fix the problem by clearing EXT4_STATE_MAY_INLINE_DATA when we are doing
direct IO write to a file. |
In the Linux kernel, the following vulnerability has been resolved:
ACPI: processor: Check for null return of devm_kzalloc() in fch_misc_setup()
devm_kzalloc() may fail, clk_data->name might be NULL and will
cause a NULL pointer dereference later.
[ rjw: Subject and changelog edits ] |
In the Linux kernel, the following vulnerability has been resolved:
FS: JFS: Fix null-ptr-deref Read in txBegin
Syzkaller reported an issue where txBegin may be called
on a superblock in a read-only mounted filesystem which leads
to NULL pointer deref. This could be solved by checking if
the filesystem is read-only before calling txBegin, and returning
with appropiate error code. |
In the Linux kernel, the following vulnerability has been resolved:
mm/uffd: fix warning without PTE_MARKER_UFFD_WP compiled in
When PTE_MARKER_UFFD_WP not configured, it's still possible to reach pte
marker code and trigger an warning. Add a few CONFIG_PTE_MARKER_UFFD_WP
ifdefs to make sure the code won't be reached when not compiled in. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Lag, fix failure to cancel delayed bond work
Commit 0d4e8ed139d8 ("net/mlx5: Lag, avoid lockdep warnings")
accidentally removed a call to cancel delayed bond work thus it may
cause queued delay to expire and fall on an already destroyed work
queue.
Fix by restoring the call cancel_delayed_work_sync() before
destroying the workqueue.
This prevents call trace such as this:
[ 329.230417] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 329.231444] #PF: supervisor write access in kernel mode
[ 329.232233] #PF: error_code(0x0002) - not-present page
[ 329.233007] PGD 0 P4D 0
[ 329.233476] Oops: 0002 [#1] SMP
[ 329.234012] CPU: 5 PID: 145 Comm: kworker/u20:4 Tainted: G OE 6.0.0-rc5_mlnx #1
[ 329.235282] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 329.236868] Workqueue: mlx5_cmd_0000:08:00.1 cmd_work_handler [mlx5_core]
[ 329.237886] RIP: 0010:_raw_spin_lock+0xc/0x20
[ 329.238585] Code: f0 0f b1 17 75 02 f3 c3 89 c6 e9 6f 3c 5f ff 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 0f 1f 44 00 00 31 c0 ba 01 00 00 00 <f0> 0f b1 17 75 02 f3 c3 89 c6 e9 45 3c 5f ff 0f 1f 44 00 00 0f 1f
[ 329.241156] RSP: 0018:ffffc900001b0e98 EFLAGS: 00010046
[ 329.241940] RAX: 0000000000000000 RBX: ffffffff82374ae0 RCX: 0000000000000000
[ 329.242954] RDX: 0000000000000001 RSI: 0000000000000014 RDI: 0000000000000000
[ 329.243974] RBP: ffff888106ccf000 R08: ffff8881004000c8 R09: ffff888100400000
[ 329.244990] R10: 0000000000000000 R11: ffffffff826669f8 R12: 0000000000002000
[ 329.246009] R13: 0000000000000005 R14: ffff888100aa7ce0 R15: ffff88852ca80000
[ 329.247030] FS: 0000000000000000(0000) GS:ffff88852ca80000(0000) knlGS:0000000000000000
[ 329.248260] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 329.249111] CR2: 0000000000000000 CR3: 000000016d675001 CR4: 0000000000770ee0
[ 329.250133] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 329.251152] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 329.252176] PKRU: 55555554 |
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Fix use-after-free in acpi_ut_copy_ipackage_to_ipackage()
There is an use-after-free reported by KASAN:
BUG: KASAN: use-after-free in acpi_ut_remove_reference+0x3b/0x82
Read of size 1 at addr ffff888112afc460 by task modprobe/2111
CPU: 0 PID: 2111 Comm: modprobe Not tainted 6.1.0-rc7-dirty
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
Call Trace:
<TASK>
kasan_report+0xae/0xe0
acpi_ut_remove_reference+0x3b/0x82
acpi_ut_copy_iobject_to_iobject+0x3be/0x3d5
acpi_ds_store_object_to_local+0x15d/0x3a0
acpi_ex_store+0x78d/0x7fd
acpi_ex_opcode_1A_1T_1R+0xbe4/0xf9b
acpi_ps_parse_aml+0x217/0x8d5
...
</TASK>
The root cause of the problem is that the acpi_operand_object
is freed when acpi_ut_walk_package_tree() fails in
acpi_ut_copy_ipackage_to_ipackage(), lead to repeated release in
acpi_ut_copy_iobject_to_iobject(). The problem was introduced
by "8aa5e56eeb61" commit, this commit is to fix memory leak in
acpi_ut_copy_iobject_to_iobject(), repeatedly adding remove
operation, lead to "acpi_operand_object" used after free.
Fix it by removing acpi_ut_remove_reference() in
acpi_ut_copy_ipackage_to_ipackage(). acpi_ut_copy_ipackage_to_ipackage()
is called to copy an internal package object into another internal
package object, when it fails, the memory of acpi_operand_object
should be freed by the caller. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix UBSAN shift-out-of-bounds warning
If get_num_sdma_queues or get_num_xgmi_sdma_queues is 0, we end up
doing a shift operation where the number of bits shifted equals
number of bits in the operand. This behaviour is undefined.
Set num_sdma_queues or num_xgmi_sdma_queues to ULLONG_MAX, if the
count is >= number of bits in the operand.
Bug: https://gitlab.freedesktop.org/drm/amd/-/issues/1472 |
In the Linux kernel, the following vulnerability has been resolved:
fbdev: imxfb: Removed unneeded release_mem_region
Remove unnecessary release_mem_region from the error path to prevent
mem region from being released twice, which could avoid resource leak
or other unexpected issues. |
In the Linux kernel, the following vulnerability has been resolved:
pwm: lpc32xx: Remove handling of PWM channels
Because LPC32xx PWM controllers have only a single output which is
registered as the only PWM device/channel per controller, it is known in
advance that pwm->hwpwm value is always 0. On basis of this fact
simplify the code by removing operations with pwm->hwpwm, there is no
controls which require channel number as input.
Even though I wasn't aware at the time when I forward ported that patch,
this fixes a null pointer dereference as lpc32xx->chip.pwms is NULL
before devm_pwmchip_add() is called. |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: Add lwtunnel encap size of all siblings in nexthop calculation
In function rt6_nlmsg_size(), the length of nexthop is calculated
by multipling the nexthop length of fib6_info and the number of
siblings. However if the fib6_info has no lwtunnel but the siblings
have lwtunnels, the nexthop length is less than it should be, and
it will trigger a warning in inet6_rt_notify() as follows:
WARNING: CPU: 0 PID: 6082 at net/ipv6/route.c:6180 inet6_rt_notify+0x120/0x130
......
Call Trace:
<TASK>
fib6_add_rt2node+0x685/0xa30
fib6_add+0x96/0x1b0
ip6_route_add+0x50/0xd0
inet6_rtm_newroute+0x97/0xa0
rtnetlink_rcv_msg+0x156/0x3d0
netlink_rcv_skb+0x5a/0x110
netlink_unicast+0x246/0x350
netlink_sendmsg+0x250/0x4c0
sock_sendmsg+0x66/0x70
___sys_sendmsg+0x7c/0xd0
__sys_sendmsg+0x5d/0xb0
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
This bug can be reproduced by script:
ip -6 addr add 2002::2/64 dev ens2
ip -6 route add 100::/64 via 2002::1 dev ens2 metric 100
for i in 10 20 30 40 50 60 70;
do
ip link add link ens2 name ipv_$i type ipvlan
ip -6 addr add 2002::$i/64 dev ipv_$i
ifconfig ipv_$i up
done
for i in 10 20 30 40 50 60;
do
ip -6 route append 100::/64 encap ip6 dst 2002::$i via 2002::1
dev ipv_$i metric 100
done
ip -6 route append 100::/64 via 2002::1 dev ipv_70 metric 100
This patch fixes it by adding nexthop_len of every siblings using
rt6_nh_nlmsg_size(). |
In the Linux kernel, the following vulnerability has been resolved:
memory: of: Fix refcount leak bug in of_lpddr3_get_ddr_timings()
We should add the of_node_put() when breaking out of
for_each_child_of_node() as it will automatically increase
and decrease the refcount. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: Fix crash on hci_create_cis_sync
When attempting to connect multiple ISO sockets without using
DEFER_SETUP may result in the following crash:
BUG: KASAN: null-ptr-deref in hci_create_cis_sync+0x18b/0x2b0
Read of size 2 at addr 0000000000000036 by task kworker/u3:1/50
CPU: 0 PID: 50 Comm: kworker/u3:1 Not tainted
6.0.0-rc7-02243-gb84a13ff4eda #4373
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009),
BIOS 1.16.0-1.fc36 04/01/2014
Workqueue: hci0 hci_cmd_sync_work
Call Trace:
<TASK>
dump_stack_lvl+0x19/0x27
kasan_report+0xbc/0xf0
? hci_create_cis_sync+0x18b/0x2b0
hci_create_cis_sync+0x18b/0x2b0
? get_link_mode+0xd0/0xd0
? __ww_mutex_lock_slowpath+0x10/0x10
? mutex_lock+0xe0/0xe0
? get_link_mode+0xd0/0xd0
hci_cmd_sync_work+0x111/0x190
process_one_work+0x427/0x650
worker_thread+0x87/0x750
? process_one_work+0x650/0x650
kthread+0x14e/0x180
? kthread_exit+0x50/0x50
ret_from_fork+0x22/0x30
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
drm/vc4: drop all currently held locks if deadlock happens
If vc4_hdmi_reset_link() returns -EDEADLK, it means that a deadlock
happened in the locking context. This situation should be addressed by
dropping all currently held locks and block until the contended lock
becomes available. Currently, vc4 is not dealing with the deadlock
properly, producing the following output when PROVE_LOCKING is enabled:
[ 825.612809] ------------[ cut here ]------------
[ 825.612852] WARNING: CPU: 1 PID: 116 at drivers/gpu/drm/drm_modeset_lock.c:276 drm_modeset_drop_locks+0x60/0x68 [drm]
[ 825.613458] Modules linked in: 8021q mrp garp stp llc
raspberrypi_cpufreq brcmfmac brcmutil crct10dif_ce hci_uart cfg80211
btqca btbcm bluetooth vc4 raspberrypi_hwmon snd_soc_hdmi_codec cec
clk_raspberrypi ecdh_generic drm_display_helper ecc rfkill
drm_dma_helper drm_kms_helper pwm_bcm2835 bcm2835_thermal bcm2835_rng
rng_core i2c_bcm2835 drm fuse ip_tables x_tables ipv6
[ 825.613735] CPU: 1 PID: 116 Comm: kworker/1:2 Tainted: G W 6.1.0-rc6-01399-g941aae326315 #3
[ 825.613759] Hardware name: Raspberry Pi 3 Model B Rev 1.2 (DT)
[ 825.613777] Workqueue: events output_poll_execute [drm_kms_helper]
[ 825.614038] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 825.614063] pc : drm_modeset_drop_locks+0x60/0x68 [drm]
[ 825.614603] lr : drm_helper_probe_detect+0x120/0x1b4 [drm_kms_helper]
[ 825.614829] sp : ffff800008313bf0
[ 825.614844] x29: ffff800008313bf0 x28: ffffcd7778b8b000 x27: 0000000000000000
[ 825.614883] x26: 0000000000000001 x25: 0000000000000001 x24: ffff677cc35c2758
[ 825.614920] x23: ffffcd7707d01430 x22: ffffcd7707c3edc7 x21: 0000000000000001
[ 825.614958] x20: 0000000000000000 x19: ffff800008313c10 x18: 000000000000b6d3
[ 825.614995] x17: ffffcd777835e214 x16: ffffcd7777cef870 x15: fffff81000000000
[ 825.615033] x14: 0000000000000000 x13: 0000000000000099 x12: 0000000000000002
[ 825.615070] x11: 72917988020af800 x10: 72917988020af800 x9 : 72917988020af800
[ 825.615108] x8 : ffff677cc665e0a8 x7 : d00a8c180000110c x6 : ffffcd77774c0054
[ 825.615145] x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000
[ 825.615181] x2 : ffff677cc55e1880 x1 : ffffcd7777cef8ec x0 : ffff800008313c10
[ 825.615219] Call trace:
[ 825.615232] drm_modeset_drop_locks+0x60/0x68 [drm]
[ 825.615773] drm_helper_probe_detect+0x120/0x1b4 [drm_kms_helper]
[ 825.616003] output_poll_execute+0xe4/0x224 [drm_kms_helper]
[ 825.616233] process_one_work+0x2b4/0x618
[ 825.616264] worker_thread+0x24c/0x464
[ 825.616288] kthread+0xec/0x110
[ 825.616310] ret_from_fork+0x10/0x20
[ 825.616335] irq event stamp: 7634
[ 825.616349] hardirqs last enabled at (7633): [<ffffcd777831ee90>] _raw_spin_unlock_irq+0x3c/0x78
[ 825.616384] hardirqs last disabled at (7634): [<ffffcd7778315a78>] __schedule+0x134/0x9f0
[ 825.616411] softirqs last enabled at (7630): [<ffffcd7707aacea0>] local_bh_enable+0x4/0x30 [ipv6]
[ 825.617019] softirqs last disabled at (7618): [<ffffcd7707aace70>] local_bh_disable+0x4/0x30 [ipv6]
[ 825.617586] ---[ end trace 0000000000000000 ]---
Therefore, deal with the deadlock as suggested by [1], using the
function drm_modeset_backoff().
[1] https://docs.kernel.org/gpu/drm-kms.html?highlight=kms#kms-locking |