| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: ecdh - explicitly zeroize private_key
private_key is overwritten with the key parameter passed in by the
caller (if present), or alternatively a newly generated private key.
However, it is possible that the caller provides a key (or the newly
generated key) which is shorter than the previous key. In that
scenario, some key material from the previous key would not be
overwritten. The easiest solution is to explicitly zeroize the entire
private_key array first.
Note that this patch slightly changes the behavior of this function:
previously, if the ecc_gen_privkey failed, the old private_key would
remain. Now, the private_key is always zeroized. This behavior is
consistent with the case where params.key is set and ecc_is_key_valid
fails. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: emux: improve patch ioctl data validation
In load_data(), make the validation of and skipping over the main info
block match that in load_guspatch().
In load_guspatch(), add checking that the specified patch length matches
the actually supplied data, like load_data() already did. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: davinci: Validate the obtained number of IRQs
Value of pdata->gpio_unbanked is taken from Device Tree. In case of broken
DT due to any error this value can be any. Without this value validation
there can be out of chips->irqs array boundaries access in
davinci_gpio_probe().
Validate the obtained nirq value so that it won't exceed the maximum
number of IRQs per bank.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
net: can: j1939: Initialize unused data in j1939_send_one()
syzbot reported kernel-infoleak in raw_recvmsg() [1]. j1939_send_one()
creates full frame including unused data, but it doesn't initialize
it. This causes the kernel-infoleak issue. Fix this by initializing
unused data.
[1]
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak in copy_to_user_iter lib/iov_iter.c:24 [inline]
BUG: KMSAN: kernel-infoleak in iterate_ubuf include/linux/iov_iter.h:29 [inline]
BUG: KMSAN: kernel-infoleak in iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
BUG: KMSAN: kernel-infoleak in iterate_and_advance include/linux/iov_iter.h:271 [inline]
BUG: KMSAN: kernel-infoleak in _copy_to_iter+0x366/0x2520 lib/iov_iter.c:185
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
copy_to_user_iter lib/iov_iter.c:24 [inline]
iterate_ubuf include/linux/iov_iter.h:29 [inline]
iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
iterate_and_advance include/linux/iov_iter.h:271 [inline]
_copy_to_iter+0x366/0x2520 lib/iov_iter.c:185
copy_to_iter include/linux/uio.h:196 [inline]
memcpy_to_msg include/linux/skbuff.h:4113 [inline]
raw_recvmsg+0x2b8/0x9e0 net/can/raw.c:1008
sock_recvmsg_nosec net/socket.c:1046 [inline]
sock_recvmsg+0x2c4/0x340 net/socket.c:1068
____sys_recvmsg+0x18a/0x620 net/socket.c:2803
___sys_recvmsg+0x223/0x840 net/socket.c:2845
do_recvmmsg+0x4fc/0xfd0 net/socket.c:2939
__sys_recvmmsg net/socket.c:3018 [inline]
__do_sys_recvmmsg net/socket.c:3041 [inline]
__se_sys_recvmmsg net/socket.c:3034 [inline]
__x64_sys_recvmmsg+0x397/0x490 net/socket.c:3034
x64_sys_call+0xf6c/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:300
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1313 [inline]
alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504
sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795
sock_alloc_send_skb include/net/sock.h:1842 [inline]
j1939_sk_alloc_skb net/can/j1939/socket.c:878 [inline]
j1939_sk_send_loop net/can/j1939/socket.c:1142 [inline]
j1939_sk_sendmsg+0xc0a/0x2730 net/can/j1939/socket.c:1277
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x30f/0x380 net/socket.c:745
____sys_sendmsg+0x877/0xb60 net/socket.c:2584
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638
__sys_sendmsg net/socket.c:2667 [inline]
__do_sys_sendmsg net/socket.c:2676 [inline]
__se_sys_sendmsg net/socket.c:2674 [inline]
__x64_sys_sendmsg+0x307/0x4a0 net/socket.c:2674
x64_sys_call+0xc4b/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:47
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Bytes 12-15 of 16 are uninitialized
Memory access of size 16 starts at ffff888120969690
Data copied to user address 00000000200017c0
CPU: 1 PID: 5050 Comm: syz-executor198 Not tainted 6.9.0-rc5-syzkaller-00031-g71b1543c83d6 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fully validate NFT_DATA_VALUE on store to data registers
register store validation for NFT_DATA_VALUE is conditional, however,
the datatype is always either NFT_DATA_VALUE or NFT_DATA_VERDICT. This
only requires a new helper function to infer the register type from the
set datatype so this conditional check can be removed. Otherwise,
pointer to chain object can be leaked through the registers. |
| In the Linux kernel, the following vulnerability has been resolved:
tun: add missing verification for short frame
The cited commit missed to check against the validity of the frame length
in the tun_xdp_one() path, which could cause a corrupted skb to be sent
downstack. Even before the skb is transmitted, the
tun_xdp_one-->eth_type_trans() may access the Ethernet header although it
can be less than ETH_HLEN. Once transmitted, this could either cause
out-of-bound access beyond the actual length, or confuse the underlayer
with incorrect or inconsistent header length in the skb metadata.
In the alternative path, tun_get_user() already prohibits short frame which
has the length less than Ethernet header size from being transmitted for
IFF_TAP.
This is to drop any frame shorter than the Ethernet header size just like
how tun_get_user() does.
CVE: CVE-2024-41091 |
| In the Linux kernel, the following vulnerability has been resolved:
tap: add missing verification for short frame
The cited commit missed to check against the validity of the frame length
in the tap_get_user_xdp() path, which could cause a corrupted skb to be
sent downstack. Even before the skb is transmitted, the
tap_get_user_xdp()-->skb_set_network_header() may assume the size is more
than ETH_HLEN. Once transmitted, this could either cause out-of-bound
access beyond the actual length, or confuse the underlayer with incorrect
or inconsistent header length in the skb metadata.
In the alternative path, tap_get_user() already prohibits short frame which
has the length less than Ethernet header size from being transmitted.
This is to drop any frame shorter than the Ethernet header size just like
how tap_get_user() does.
CVE: CVE-2024-41090 |
| In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: Add tx check to prevent skb leak
Below is a summary of how the driver stores a reference to an skb during
transmit:
tx_buff[free_map[consumer_index]]->skb = new_skb;
free_map[consumer_index] = IBMVNIC_INVALID_MAP;
consumer_index ++;
Where variable data looks like this:
free_map == [4, IBMVNIC_INVALID_MAP, IBMVNIC_INVALID_MAP, 0, 3]
consumer_index^
tx_buff == [skb=null, skb=<ptr>, skb=<ptr>, skb=null, skb=null]
The driver has checks to ensure that free_map[consumer_index] pointed to
a valid index but there was no check to ensure that this index pointed
to an unused/null skb address. So, if, by some chance, our free_map and
tx_buff lists become out of sync then we were previously risking an
skb memory leak. This could then cause tcp congestion control to stop
sending packets, eventually leading to ETIMEDOUT.
Therefore, add a conditional to ensure that the skb address is null. If
not then warn the user (because this is still a bug that should be
patched) and free the old pointer to prevent memleak/tcp problems. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: check bo_va->bo is non-NULL before using it
The call to radeon_vm_clear_freed might clear bo_va->bo, so
we have to check it before dereferencing it. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix uninit-value in copy_name
[syzbot reported]
BUG: KMSAN: uninit-value in sized_strscpy+0xc4/0x160
sized_strscpy+0xc4/0x160
copy_name+0x2af/0x320 fs/hfsplus/xattr.c:411
hfsplus_listxattr+0x11e9/0x1a50 fs/hfsplus/xattr.c:750
vfs_listxattr fs/xattr.c:493 [inline]
listxattr+0x1f3/0x6b0 fs/xattr.c:840
path_listxattr fs/xattr.c:864 [inline]
__do_sys_listxattr fs/xattr.c:876 [inline]
__se_sys_listxattr fs/xattr.c:873 [inline]
__x64_sys_listxattr+0x16b/0x2f0 fs/xattr.c:873
x64_sys_call+0x2ba0/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:195
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3877 [inline]
slab_alloc_node mm/slub.c:3918 [inline]
kmalloc_trace+0x57b/0xbe0 mm/slub.c:4065
kmalloc include/linux/slab.h:628 [inline]
hfsplus_listxattr+0x4cc/0x1a50 fs/hfsplus/xattr.c:699
vfs_listxattr fs/xattr.c:493 [inline]
listxattr+0x1f3/0x6b0 fs/xattr.c:840
path_listxattr fs/xattr.c:864 [inline]
__do_sys_listxattr fs/xattr.c:876 [inline]
__se_sys_listxattr fs/xattr.c:873 [inline]
__x64_sys_listxattr+0x16b/0x2f0 fs/xattr.c:873
x64_sys_call+0x2ba0/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:195
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
[Fix]
When allocating memory to strbuf, initialize memory to 0. |
| In the Linux kernel, the following vulnerability has been resolved:
ppp: reject claimed-as-LCP but actually malformed packets
Since 'ppp_async_encode()' assumes valid LCP packets (with code
from 1 to 7 inclusive), add 'ppp_check_packet()' to ensure that
LCP packet has an actual body beyond PPP_LCP header bytes, and
reject claimed-as-LCP but actually malformed data otherwise. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: don't walk off the end of ealist
Add a check before visiting the members of ea to
make sure each ea stays within the ealist. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: strict bound check before memcmp in ocfs2_xattr_find_entry()
xattr in ocfs2 maybe 'non-indexed', which saved with additional space
requested. It's better to check if the memory is out of bound before
memcmp, although this possibility mainly comes from crafted poisonous
images. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Build event generation tests only as modules
The kprobes and synth event generation test modules add events and lock
(get a reference) those event file reference in module init function,
and unlock and delete it in module exit function. This is because those
are designed for playing as modules.
If we make those modules as built-in, those events are left locked in the
kernel, and never be removed. This causes kprobe event self-test failure
as below.
[ 97.349708] ------------[ cut here ]------------
[ 97.353453] WARNING: CPU: 3 PID: 1 at kernel/trace/trace_kprobe.c:2133 kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.357106] Modules linked in:
[ 97.358488] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 6.9.0-g699646734ab5-dirty #14
[ 97.361556] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[ 97.363880] RIP: 0010:kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.365538] Code: a8 24 08 82 e9 ae fd ff ff 90 0f 0b 90 48 c7 c7 e5 aa 0b 82 e9 ee fc ff ff 90 0f 0b 90 48 c7 c7 2d 61 06 82 e9 8e fd ff ff 90 <0f> 0b 90 48 c7 c7 33 0b 0c 82 89 c6 e8 6e 03 1f ff 41 ff c7 e9 90
[ 97.370429] RSP: 0000:ffffc90000013b50 EFLAGS: 00010286
[ 97.371852] RAX: 00000000fffffff0 RBX: ffff888005919c00 RCX: 0000000000000000
[ 97.373829] RDX: ffff888003f40000 RSI: ffffffff8236a598 RDI: ffff888003f40a68
[ 97.375715] RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
[ 97.377675] R10: ffffffff811c9ae5 R11: ffffffff8120c4e0 R12: 0000000000000000
[ 97.379591] R13: 0000000000000001 R14: 0000000000000015 R15: 0000000000000000
[ 97.381536] FS: 0000000000000000(0000) GS:ffff88807dcc0000(0000) knlGS:0000000000000000
[ 97.383813] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 97.385449] CR2: 0000000000000000 CR3: 0000000002244000 CR4: 00000000000006b0
[ 97.387347] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 97.389277] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 97.391196] Call Trace:
[ 97.391967] <TASK>
[ 97.392647] ? __warn+0xcc/0x180
[ 97.393640] ? kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.395181] ? report_bug+0xbd/0x150
[ 97.396234] ? handle_bug+0x3e/0x60
[ 97.397311] ? exc_invalid_op+0x1a/0x50
[ 97.398434] ? asm_exc_invalid_op+0x1a/0x20
[ 97.399652] ? trace_kprobe_is_busy+0x20/0x20
[ 97.400904] ? tracing_reset_all_online_cpus+0x15/0x90
[ 97.402304] ? kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.403773] ? init_kprobe_trace+0x50/0x50
[ 97.404972] do_one_initcall+0x112/0x240
[ 97.406113] do_initcall_level+0x95/0xb0
[ 97.407286] ? kernel_init+0x1a/0x1a0
[ 97.408401] do_initcalls+0x3f/0x70
[ 97.409452] kernel_init_freeable+0x16f/0x1e0
[ 97.410662] ? rest_init+0x1f0/0x1f0
[ 97.411738] kernel_init+0x1a/0x1a0
[ 97.412788] ret_from_fork+0x39/0x50
[ 97.413817] ? rest_init+0x1f0/0x1f0
[ 97.414844] ret_from_fork_asm+0x11/0x20
[ 97.416285] </TASK>
[ 97.417134] irq event stamp: 13437323
[ 97.418376] hardirqs last enabled at (13437337): [<ffffffff8110bc0c>] console_unlock+0x11c/0x150
[ 97.421285] hardirqs last disabled at (13437370): [<ffffffff8110bbf1>] console_unlock+0x101/0x150
[ 97.423838] softirqs last enabled at (13437366): [<ffffffff8108e17f>] handle_softirqs+0x23f/0x2a0
[ 97.426450] softirqs last disabled at (13437393): [<ffffffff8108e346>] __irq_exit_rcu+0x66/0xd0
[ 97.428850] ---[ end trace 0000000000000000 ]---
And also, since we can not cleanup dynamic_event file, ftracetest are
failed too.
To avoid these issues, build these tests only as modules. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Add check for srq max_sge attribute
max_sge attribute is passed by the user, and is inserted and used
unchecked, so verify that the value doesn't exceed maximum allowed value
before using it. |
| Potential SSRF in mod_rewrite in Apache HTTP Server 2.4.59 and earlier allows an attacker to cause unsafe RewriteRules to unexpectedly setup URL's to be handled by mod_proxy.
Users are recommended to upgrade to version 2.4.60, which fixes this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/komeda: check for error-valued pointer
komeda_pipeline_get_state() may return an error-valued pointer, thus
check the pointer for negative or null value before dereferencing. |
| A vulnerability has been identified in Omnivise T3000 Application Server R9.2 (All versions), Omnivise T3000 R8.2 SP3 (All versions), Omnivise T3000 R8.2 SP4 (All versions). The affected system exposes the port of an internal application on the public network interface allowing an attacker to circumvent authentication and directly access the exposed application. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: taprio: extend minimum interval restriction to entire cycle too
It is possible for syzbot to side-step the restriction imposed by the
blamed commit in the Fixes: tag, because the taprio UAPI permits a
cycle-time different from (and potentially shorter than) the sum of
entry intervals.
We need one more restriction, which is that the cycle time itself must
be larger than N * ETH_ZLEN bit times, where N is the number of schedule
entries. This restriction needs to apply regardless of whether the cycle
time came from the user or was the implicit, auto-calculated value, so
we move the existing "cycle == 0" check outside the "if "(!new->cycle_time)"
branch. This way covers both conditions and scenarios.
Add a selftest which illustrates the issue triggered by syzbot. |
| Invalid Accept-Encoding header can cause Apache Traffic Server to fail cache lookup and force forwarding requests.
This issue affects Apache Traffic Server: from 8.0.0 through 8.1.10, from 9.0.0 through 9.2.4.
Users are recommended to upgrade to version 8.1.11 or 9.2.5, which fixes the issue. |