CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Mattermost versions 10.10.x <= 10.10.1, 10.5.x <= 10.5.9, 10.9.x <= 10.9.4 fail to validate the redirect_to parameter, allowing an attacker to craft a malicious link that, once a user authenticates with their SAML provider, could post the user’s cookies to an attacker-controlled URL. |
Mattermost versions 10.5.x <= 10.5.9 fail to properly validate redirect URLs which allows attackers to redirect users to malicious sites via crafted OAuth login URLs |
A vulnerability was found in D-Link DI-8100G, DI-8200G and DI-8003G 17.12.20A1/19.12.10A1. Affected by this issue is the function sub_433F7C of the file version_upgrade.asp of the component jhttpd. The manipulation of the argument path results in os command injection. The attack may be launched remotely. The exploit has been made public and could be used. |
Mattermost versions 10.8.x <= 10.8.3, 10.5.x <= 10.5.8, 9.11.x <= 9.11.17, 10.10.x <= 10.10.1, 10.9.x <= 10.9.3 fail to properly validate cache keys for link metadata which allows authenticated users to access unauthorized posts and poison link previews via hash collision attacks on FNV-1 hashing |
Mattermost versions 10.10.x <= 10.10.1 fail to properly sanitize user data during shared channel membership synchronization, which allows malicious or compromised remote clusters to access sensitive user information via unsanitized user objects. This vulnerability affects Mattermost Server instances with shared channels enabled. |
The Chaos Controller Manager in Chaos Mesh exposes a GraphQL debugging server without authentication to the entire Kubernetes cluster, which provides an API to kill arbitrary processes in any Kubernetes pod, leading to cluster-wide denial of service. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid deadlock in fs reclaim with page writeback
Ext4 has a filesystem wide lock protecting ext4_writepages() calls to
avoid races with switching of journalled data flag or inode format. This
lock can however cause a deadlock like:
CPU0 CPU1
ext4_writepages()
percpu_down_read(sbi->s_writepages_rwsem);
ext4_change_inode_journal_flag()
percpu_down_write(sbi->s_writepages_rwsem);
- blocks, all readers block from now on
ext4_do_writepages()
ext4_init_io_end()
kmem_cache_zalloc(io_end_cachep, GFP_KERNEL)
fs_reclaim frees dentry...
dentry_unlink_inode()
iput() - last ref =>
iput_final() - inode dirty =>
write_inode_now()...
ext4_writepages() tries to acquire sbi->s_writepages_rwsem
and blocks forever
Make sure we cannot recurse into filesystem reclaim from writeback code
to avoid the deadlock. |
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Avoid undefined behavior: applying zero offset to null pointer
ACPICA commit 770653e3ba67c30a629ca7d12e352d83c2541b1e
Before this change we see the following UBSAN stack trace in Fuchsia:
#0 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302
#1.2 0x000020d0f660777f in ubsan_get_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:41 <libclang_rt.asan.so>+0x3d77f
#1.1 0x000020d0f660777f in maybe_print_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:51 <libclang_rt.asan.so>+0x3d77f
#1 0x000020d0f660777f in ~scoped_report() compiler-rt/lib/ubsan/ubsan_diag.cpp:387 <libclang_rt.asan.so>+0x3d77f
#2 0x000020d0f660b96d in handlepointer_overflow_impl() compiler-rt/lib/ubsan/ubsan_handlers.cpp:809 <libclang_rt.asan.so>+0x4196d
#3 0x000020d0f660b50d in compiler-rt/lib/ubsan/ubsan_handlers.cpp:815 <libclang_rt.asan.so>+0x4150d
#4 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302
#5 0x000021e4213e2369 in acpi_ds_call_control_method(struct acpi_thread_state*, struct acpi_walk_state*, union acpi_parse_object*) ../../third_party/acpica/source/components/dispatcher/dsmethod.c:605 <platform-bus-x86.so>+0x262369
#6 0x000021e421437fac in acpi_ps_parse_aml(struct acpi_walk_state*) ../../third_party/acpica/source/components/parser/psparse.c:550 <platform-bus-x86.so>+0x2b7fac
#7 0x000021e4214464d2 in acpi_ps_execute_method(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/parser/psxface.c:244 <platform-bus-x86.so>+0x2c64d2
#8 0x000021e4213aa052 in acpi_ns_evaluate(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/namespace/nseval.c:250 <platform-bus-x86.so>+0x22a052
#9 0x000021e421413dd8 in acpi_ns_init_one_device(acpi_handle, u32, void*, void**) ../../third_party/acpica/source/components/namespace/nsinit.c:735 <platform-bus-x86.so>+0x293dd8
#10 0x000021e421429e98 in acpi_ns_walk_namespace(acpi_object_type, acpi_handle, u32, u32, acpi_walk_callback, acpi_walk_callback, void*, void**) ../../third_party/acpica/source/components/namespace/nswalk.c:298 <platform-bus-x86.so>+0x2a9e98
#11 0x000021e4214131ac in acpi_ns_initialize_devices(u32) ../../third_party/acpica/source/components/namespace/nsinit.c:268 <platform-bus-x86.so>+0x2931ac
#12 0x000021e42147c40d in acpi_initialize_objects(u32) ../../third_party/acpica/source/components/utilities/utxfinit.c:304 <platform-bus-x86.so>+0x2fc40d
#13 0x000021e42126d603 in acpi::acpi_impl::initialize_acpi(acpi::acpi_impl*) ../../src/devices/board/lib/acpi/acpi-impl.cc:224 <platform-bus-x86.so>+0xed603
Add a simple check that avoids incrementing a pointer by zero, but
otherwise behaves as before. Note that our findings are against ACPICA
20221020, but the same code exists on master. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: add the missing IP_SET_HASH_WITH_NET0 macro for ip_set_hash_netportnet.c
The missing IP_SET_HASH_WITH_NET0 macro in ip_set_hash_netportnet can
lead to the use of wrong `CIDR_POS(c)` for calculating array offsets,
which can lead to integer underflow. As a result, it leads to slab
out-of-bound access.
This patch adds back the IP_SET_HASH_WITH_NET0 macro to
ip_set_hash_netportnet to address the issue. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix potential stack-out-of-bounds in brcmf_c_preinit_dcmds()
This patch fixes a stack-out-of-bounds read in brcmfmac that occurs
when 'buf' that is not null-terminated is passed as an argument of
strsep() in brcmf_c_preinit_dcmds(). This buffer is filled with a firmware
version string by memcpy() in brcmf_fil_iovar_data_get().
The patch ensures buf is null-terminated.
Found by a modified version of syzkaller.
[ 47.569679][ T1897] brcmfmac: brcmf_fw_alloc_request: using brcm/brcmfmac43236b for chip BCM43236/3
[ 47.582839][ T1897] brcmfmac: brcmf_c_process_clm_blob: no clm_blob available (err=-2), device may have limited channels available
[ 47.601565][ T1897] ==================================================================
[ 47.602574][ T1897] BUG: KASAN: stack-out-of-bounds in strsep+0x1b2/0x1f0
[ 47.603447][ T1897] Read of size 1 at addr ffffc90001f6f000 by task kworker/0:2/1897
[ 47.604336][ T1897]
[ 47.604621][ T1897] CPU: 0 PID: 1897 Comm: kworker/0:2 Tainted: G O 5.14.0+ #131
[ 47.605617][ T1897] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
[ 47.606907][ T1897] Workqueue: usb_hub_wq hub_event
[ 47.607453][ T1897] Call Trace:
[ 47.607801][ T1897] dump_stack_lvl+0x8e/0xd1
[ 47.608295][ T1897] print_address_description.constprop.0.cold+0xf/0x334
[ 47.609009][ T1897] ? strsep+0x1b2/0x1f0
[ 47.609434][ T1897] ? strsep+0x1b2/0x1f0
[ 47.609863][ T1897] kasan_report.cold+0x83/0xdf
[ 47.610366][ T1897] ? strsep+0x1b2/0x1f0
[ 47.610882][ T1897] strsep+0x1b2/0x1f0
[ 47.611300][ T1897] ? brcmf_fil_iovar_data_get+0x3a/0xf0
[ 47.611883][ T1897] brcmf_c_preinit_dcmds+0x995/0xc40
[ 47.612434][ T1897] ? brcmf_c_set_joinpref_default+0x100/0x100
[ 47.613078][ T1897] ? rcu_read_lock_sched_held+0xa1/0xd0
[ 47.613662][ T1897] ? rcu_read_lock_bh_held+0xb0/0xb0
[ 47.614208][ T1897] ? lock_acquire+0x19d/0x4e0
[ 47.614704][ T1897] ? find_held_lock+0x2d/0x110
[ 47.615236][ T1897] ? brcmf_usb_deq+0x1a7/0x260
[ 47.615741][ T1897] ? brcmf_usb_rx_fill_all+0x5a/0xf0
[ 47.616288][ T1897] brcmf_attach+0x246/0xd40
[ 47.616758][ T1897] ? wiphy_new_nm+0x1703/0x1dd0
[ 47.617280][ T1897] ? kmemdup+0x43/0x50
[ 47.617720][ T1897] brcmf_usb_probe+0x12de/0x1690
[ 47.618244][ T1897] ? brcmf_usbdev_qinit.constprop.0+0x470/0x470
[ 47.618901][ T1897] usb_probe_interface+0x2aa/0x760
[ 47.619429][ T1897] ? usb_probe_device+0x250/0x250
[ 47.619950][ T1897] really_probe+0x205/0xb70
[ 47.620435][ T1897] ? driver_allows_async_probing+0x130/0x130
[ 47.621048][ T1897] __driver_probe_device+0x311/0x4b0
[ 47.621595][ T1897] ? driver_allows_async_probing+0x130/0x130
[ 47.622209][ T1897] driver_probe_device+0x4e/0x150
[ 47.622739][ T1897] __device_attach_driver+0x1cc/0x2a0
[ 47.623287][ T1897] bus_for_each_drv+0x156/0x1d0
[ 47.623796][ T1897] ? bus_rescan_devices+0x30/0x30
[ 47.624309][ T1897] ? lockdep_hardirqs_on_prepare+0x273/0x3e0
[ 47.624907][ T1897] ? trace_hardirqs_on+0x46/0x160
[ 47.625437][ T1897] __device_attach+0x23f/0x3a0
[ 47.625924][ T1897] ? device_bind_driver+0xd0/0xd0
[ 47.626433][ T1897] ? kobject_uevent_env+0x287/0x14b0
[ 47.627057][ T1897] bus_probe_device+0x1da/0x290
[ 47.627557][ T1897] device_add+0xb7b/0x1eb0
[ 47.628027][ T1897] ? wait_for_completion+0x290/0x290
[ 47.628593][ T1897] ? __fw_devlink_link_to_suppliers+0x5a0/0x5a0
[ 47.629249][ T1897] usb_set_configuration+0xf59/0x16f0
[ 47.629829][ T1897] usb_generic_driver_probe+0x82/0xa0
[ 47.630385][ T1897] usb_probe_device+0xbb/0x250
[ 47.630927][ T1897] ? usb_suspend+0x590/0x590
[ 47.631397][ T1897] really_probe+0x205/0xb70
[ 47.631855][ T1897] ? driver_allows_async_probing+0x130/0x130
[ 47.632469][ T1897] __driver_probe_device+0x311/0x4b0
[ 47.633002][
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
x86/resctrl: Clear staged_config[] before and after it is used
As a temporary storage, staged_config[] in rdt_domain should be cleared
before and after it is used. The stale value in staged_config[] could
cause an MSR access error.
Here is a reproducer on a system with 16 usable CLOSIDs for a 15-way L3
Cache (MBA should be disabled if the number of CLOSIDs for MB is less than
16.) :
mount -t resctrl resctrl -o cdp /sys/fs/resctrl
mkdir /sys/fs/resctrl/p{1..7}
umount /sys/fs/resctrl/
mount -t resctrl resctrl /sys/fs/resctrl
mkdir /sys/fs/resctrl/p{1..8}
An error occurs when creating resource group named p8:
unchecked MSR access error: WRMSR to 0xca0 (tried to write 0x00000000000007ff) at rIP: 0xffffffff82249142 (cat_wrmsr+0x32/0x60)
Call Trace:
<IRQ>
__flush_smp_call_function_queue+0x11d/0x170
__sysvec_call_function+0x24/0xd0
sysvec_call_function+0x89/0xc0
</IRQ>
<TASK>
asm_sysvec_call_function+0x16/0x20
When creating a new resource control group, hardware will be configured
by the following process:
rdtgroup_mkdir()
rdtgroup_mkdir_ctrl_mon()
rdtgroup_init_alloc()
resctrl_arch_update_domains()
resctrl_arch_update_domains() iterates and updates all resctrl_conf_type
whose have_new_ctrl is true. Since staged_config[] holds the same values as
when CDP was enabled, it will continue to update the CDP_CODE and CDP_DATA
configurations. When group p8 is created, get_config_index() called in
resctrl_arch_update_domains() will return 16 and 17 as the CLOSIDs for
CDP_CODE and CDP_DATA, which will be translated to an invalid register -
0xca0 in this scenario.
Fix it by clearing staged_config[] before and after it is used.
[reinette: re-order commit tags] |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Remove WARN_ON_ONCE() call from ufshcd_uic_cmd_compl()
The UIC completion interrupt may be disabled while an UIC command is
being processed. When the UIC completion interrupt is reenabled, an UIC
interrupt is triggered and the WARN_ON_ONCE(!cmd) statement is hit.
Hence this patch that removes this kernel warning. |
In the Linux kernel, the following vulnerability has been resolved:
mmc: moxart: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and goto error path which will call
mmc_free_host(). |
In the Linux kernel, the following vulnerability has been resolved:
kcm: annotate data-races around kcm->rx_wait
kcm->rx_psock can be read locklessly in kcm_rfree().
Annotate the read and writes accordingly.
syzbot reported:
BUG: KCSAN: data-race in kcm_rcv_strparser / kcm_rfree
write to 0xffff88810784e3d0 of 1 bytes by task 1823 on cpu 1:
reserve_rx_kcm net/kcm/kcmsock.c:283 [inline]
kcm_rcv_strparser+0x250/0x3a0 net/kcm/kcmsock.c:363
__strp_recv+0x64c/0xd20 net/strparser/strparser.c:301
strp_recv+0x6d/0x80 net/strparser/strparser.c:335
tcp_read_sock+0x13e/0x5a0 net/ipv4/tcp.c:1703
strp_read_sock net/strparser/strparser.c:358 [inline]
do_strp_work net/strparser/strparser.c:406 [inline]
strp_work+0xe8/0x180 net/strparser/strparser.c:415
process_one_work+0x3d3/0x720 kernel/workqueue.c:2289
worker_thread+0x618/0xa70 kernel/workqueue.c:2436
kthread+0x1a9/0x1e0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
read to 0xffff88810784e3d0 of 1 bytes by task 17869 on cpu 0:
kcm_rfree+0x121/0x220 net/kcm/kcmsock.c:181
skb_release_head_state+0x8e/0x160 net/core/skbuff.c:841
skb_release_all net/core/skbuff.c:852 [inline]
__kfree_skb net/core/skbuff.c:868 [inline]
kfree_skb_reason+0x5c/0x260 net/core/skbuff.c:891
kfree_skb include/linux/skbuff.h:1216 [inline]
kcm_recvmsg+0x226/0x2b0 net/kcm/kcmsock.c:1161
____sys_recvmsg+0x16c/0x2e0
___sys_recvmsg net/socket.c:2743 [inline]
do_recvmmsg+0x2f1/0x710 net/socket.c:2837
__sys_recvmmsg net/socket.c:2916 [inline]
__do_sys_recvmmsg net/socket.c:2939 [inline]
__se_sys_recvmmsg net/socket.c:2932 [inline]
__x64_sys_recvmmsg+0xde/0x160 net/socket.c:2932
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x01 -> 0x00
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 17869 Comm: syz-executor.2 Not tainted 6.1.0-rc1-syzkaller-00010-gbb1a1146467a-dirty #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022 |
In the Linux kernel, the following vulnerability has been resolved:
irqchip/alpine-msi: Fix refcount leak in alpine_msix_init_domains
of_irq_find_parent() returns a node pointer with refcount incremented,
We should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak. |
A vulnerability was determined in Tenda AC9 and AC15 15.03.05.14. This affects the function formexeCommand of the file /goform/exeCommand. This manipulation of the argument cmdinput causes os command injection. Remote exploitation of the attack is possible. The exploit has been publicly disclosed and may be utilized. |
In the Linux kernel, the following vulnerability has been resolved:
io_uring/af_unix: defer registered files gc to io_uring release
Instead of putting io_uring's registered files in unix_gc() we want it
to be done by io_uring itself. The trick here is to consider io_uring
registered files for cycle detection but not actually putting them down.
Because io_uring can't register other ring instances, this will remove
all refs to the ring file triggering the ->release path and clean up
with io_ring_ctx_free().
[axboe: add kerneldoc comment to skb, fold in skb leak fix] |
In the Linux kernel, the following vulnerability has been resolved:
scsi: core: Fix possible memory leak if device_add() fails
If device_add() returns error, the name allocated by dev_set_name() needs
be freed. As the comment of device_add() says, put_device() should be used
to decrease the reference count in the error path. So fix this by calling
put_device(), then the name can be freed in kobject_cleanp(). |
In the Linux kernel, the following vulnerability has been resolved:
vfio/type1: prevent underflow of locked_vm via exec()
When a vfio container is preserved across exec, the task does not change,
but it gets a new mm with locked_vm=0, and loses the count from existing
dma mappings. If the user later unmaps a dma mapping, locked_vm underflows
to a large unsigned value, and a subsequent dma map request fails with
ENOMEM in __account_locked_vm.
To avoid underflow, grab and save the mm at the time a dma is mapped.
Use that mm when adjusting locked_vm, rather than re-acquiring the saved
task's mm, which may have changed. If the saved mm is dead, do nothing.
locked_vm is incremented for existing mappings in a subsequent patch. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix amdgpu_irq_put call trace in gmc_v10_0_hw_fini
The gmc.ecc_irq is enabled by firmware per IFWI setting,
and the host driver is not privileged to enable/disable
the interrupt. So, it is meaningless to use the amdgpu_irq_put
function in gmc_v10_0_hw_fini, which also leads to the call
trace.
[ 82.340264] Call Trace:
[ 82.340265] <TASK>
[ 82.340269] gmc_v10_0_hw_fini+0x83/0xa0 [amdgpu]
[ 82.340447] gmc_v10_0_suspend+0xe/0x20 [amdgpu]
[ 82.340623] amdgpu_device_ip_suspend_phase2+0x127/0x1c0 [amdgpu]
[ 82.340789] amdgpu_device_ip_suspend+0x3d/0x80 [amdgpu]
[ 82.340955] amdgpu_device_pre_asic_reset+0xdd/0x2b0 [amdgpu]
[ 82.341122] amdgpu_device_gpu_recover.cold+0x4dd/0xbb2 [amdgpu]
[ 82.341359] amdgpu_debugfs_reset_work+0x4c/0x70 [amdgpu]
[ 82.341529] process_one_work+0x21d/0x3f0
[ 82.341535] worker_thread+0x1fa/0x3c0
[ 82.341538] ? process_one_work+0x3f0/0x3f0
[ 82.341540] kthread+0xff/0x130
[ 82.341544] ? kthread_complete_and_exit+0x20/0x20
[ 82.341547] ret_from_fork+0x22/0x30 |