| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Vulnerability in the PeopleSoft Enterprise PeopleTools product of Oracle PeopleSoft (component: Rich Text Editor). Supported versions that are affected are 8.60, 8.61 and 8.62. Easily exploitable vulnerability allows low privileged attacker with network access via HTTP to compromise PeopleSoft Enterprise PeopleTools. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in PeopleSoft Enterprise PeopleTools, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of PeopleSoft Enterprise PeopleTools accessible data as well as unauthorized read access to a subset of PeopleSoft Enterprise PeopleTools accessible data. CVSS 3.1 Base Score 5.4 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N). |
| Vulnerability in the RDBMS Functional Index component of Oracle Database Server. Supported versions that are affected are 23.4-23.9. Easily exploitable vulnerability allows high privileged attacker having SYSDBA privilege with network access via Oracle Net to compromise RDBMS Functional Index. Successful attacks of this vulnerability can result in unauthorized read access to a subset of RDBMS Functional Index accessible data. CVSS 3.1 Base Score 2.7 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:N/A:N). |
| Vulnerability in the PeopleSoft Enterprise PeopleTools product of Oracle PeopleSoft (component: PIA Core Technology). Supported versions that are affected are 8.60, 8.61 and 8.62. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise PeopleSoft Enterprise PeopleTools. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in PeopleSoft Enterprise PeopleTools, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of PeopleSoft Enterprise PeopleTools accessible data as well as unauthorized read access to a subset of PeopleSoft Enterprise PeopleTools accessible data. CVSS 3.1 Base Score 6.1 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N). |
| Vulnerability in the PeopleSoft Enterprise PeopleTools product of Oracle PeopleSoft (component: PIA Core Technology). Supported versions that are affected are 8.60, 8.61 and 8.62. Easily exploitable vulnerability allows low privileged attacker with network access via HTTP to compromise PeopleSoft Enterprise PeopleTools. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in PeopleSoft Enterprise PeopleTools, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of PeopleSoft Enterprise PeopleTools accessible data as well as unauthorized read access to a subset of PeopleSoft Enterprise PeopleTools accessible data. CVSS 3.1 Base Score 5.4 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N). |
| An out-of-bounds read issue existed that led to the disclosure of kernel memory. This was addressed with improved input validation. This issue is fixed in macOS Monterey 12.3.1, Security Update 2022-004 Catalina, macOS Big Sur 11.6.6. A local user may be able to read kernel memory. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: add missing cpu_to_node to kvzalloc_node in mlx5e_open_xdpredirect_sq
kvzalloc_node is not doing a runtime check on the node argument
(__alloc_pages_node_noprof does have a VM_BUG_ON, but it expands to
nothing on !CONFIG_DEBUG_VM builds), so doing any ethtool/netlink
operation that calls mlx5e_open on a CPU that's larger that MAX_NUMNODES
triggers OOB access and panic (see the trace below).
Add missing cpu_to_node call to convert cpu id to node id.
[ 165.427394] mlx5_core 0000:5c:00.0 beth1: Link up
[ 166.479327] BUG: unable to handle page fault for address: 0000000800000010
[ 166.494592] #PF: supervisor read access in kernel mode
[ 166.505995] #PF: error_code(0x0000) - not-present page
...
[ 166.816958] Call Trace:
[ 166.822380] <TASK>
[ 166.827034] ? __die_body+0x64/0xb0
[ 166.834774] ? page_fault_oops+0x2cd/0x3f0
[ 166.843862] ? exc_page_fault+0x63/0x130
[ 166.852564] ? asm_exc_page_fault+0x22/0x30
[ 166.861843] ? __kvmalloc_node_noprof+0x43/0xd0
[ 166.871897] ? get_partial_node+0x1c/0x320
[ 166.880983] ? deactivate_slab+0x269/0x2b0
[ 166.890069] ___slab_alloc+0x521/0xa90
[ 166.898389] ? __kvmalloc_node_noprof+0x43/0xd0
[ 166.908442] __kmalloc_node_noprof+0x216/0x3f0
[ 166.918302] ? __kvmalloc_node_noprof+0x43/0xd0
[ 166.928354] __kvmalloc_node_noprof+0x43/0xd0
[ 166.938021] mlx5e_open_channels+0x5e2/0xc00
[ 166.947496] mlx5e_open_locked+0x3e/0xf0
[ 166.956201] mlx5e_open+0x23/0x50
[ 166.963551] __dev_open+0x114/0x1c0
[ 166.971292] __dev_change_flags+0xa2/0x1b0
[ 166.980378] dev_change_flags+0x21/0x60
[ 166.988887] do_setlink+0x38d/0xf20
[ 166.996628] ? ep_poll_callback+0x1b9/0x240
[ 167.005910] ? __nla_validate_parse.llvm.10713395753544950386+0x80/0xd70
[ 167.020782] ? __wake_up_sync_key+0x52/0x80
[ 167.030066] ? __mutex_lock+0xff/0x550
[ 167.038382] ? security_capable+0x50/0x90
[ 167.047279] rtnl_setlink+0x1c9/0x210
[ 167.055403] ? ep_poll_callback+0x1b9/0x240
[ 167.064684] ? security_capable+0x50/0x90
[ 167.073579] rtnetlink_rcv_msg+0x2f9/0x310
[ 167.082667] ? rtnetlink_bind+0x30/0x30
[ 167.091173] netlink_rcv_skb+0xb1/0xe0
[ 167.099492] netlink_unicast+0x20f/0x2e0
[ 167.108191] netlink_sendmsg+0x389/0x420
[ 167.116896] __sys_sendto+0x158/0x1c0
[ 167.125024] __x64_sys_sendto+0x22/0x30
[ 167.133534] do_syscall_64+0x63/0x130
[ 167.141657] ? __irq_exit_rcu.llvm.17843942359718260576+0x52/0xd0
[ 167.155181] entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
| Out-of-bounds read in the parsing header for JPEG decoding in libpadm.so prior to SMR Oct-2025 Release 1 allows local attackers to potentially access out-of-bounds memory. |
| Out-of-bounds read and write in libimagecodec.quram.so prior to SMR Oct-2025 Release 1 allows remote attackers to access out-of-bounds memory. |
| In USBX before 6.4.3, the USB support module for Eclipse Foundation ThreadX, there was a potential out of bound read issue in _ux_host_class_audio10_sam_parse_func() when parsing a list of sampling frequencies. |
| In USBX before 6.4.3, the USB support module for Eclipse Foundation ThreadX, there was a potential out of bound read issue in _ux_host_class_audio_device_type_get()
when parsing a descriptor of an USB audio device. |
| In USBX before 6.4.3, the USB support module for Eclipse Foundation ThreadX, there was a potential out of bound read issue in _ux_host_class_audio_alternate_setting_locate() when parsing a descriptor with attacker-controlled frequency fields. |
| In USBX before 6.4.3, the USB support module for Eclipse Foundation ThreadX, there was a potential out of bound read issue in _ux_host_class_audio_streaming_sampling_get() when parsing a descriptor of an USB streaming device. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Fix for out-of bound access error
Selfgen stats are placed in a buffer using print_array_to_buf_index() function.
Array length parameter passed to the function is too big, resulting in possible
out-of bound memory error.
Decreasing buffer size by one fixes faulty upper bound of passed array.
Discovered in coverity scan, CID 1600742 and CID 1600758 |
| The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat Extension packets, which allows remote attackers to obtain sensitive information from process memory via crafted packets that trigger a buffer over-read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug. |
| Incorrect handling of complex species in V8 in Google Chrome prior to 57.0.2987.98 for Linux, Windows, and Mac and 57.0.2987.108 for Android allowed a remote attacker to execute arbitrary code via a crafted HTML page. |
| V8 in Google Chrome prior to 54.0.2840.90 for Linux, and 54.0.2840.85 for Android, and 54.0.2840.87 for Windows and Mac included incorrect optimisation assumptions, which allowed a remote attacker to perform arbitrary read/write operations, leading to code execution, via a crafted HTML page. |
| The WAP interface in Trihedral VTScada (formerly VTS) 8.x through 11.x before 11.2.02 allows remote attackers to cause a denial of service (out-of-bounds read and application crash) via unspecified vectors. |
| The Array.prototype.concat implementation in builtins.cc in Google V8, as used in Google Chrome before 49.0.2623.108, does not properly consider element data types, which allows remote attackers to cause a denial of service (out-of-bounds read) or possibly have unspecified other impact via crafted JavaScript code. |
| Undisclosed traffic can cause the Traffic Management Microkernel (TMM) to terminate. This issue may occur when a Datagram Transport Layer Security (DTLS) 1.2 virtual server is enabled with a Server SSL profile that is configured with a certificate, key, and the SSL Sign Hash set to ANY, and the backend server is enabled with DTLS 1.2 and client authentication. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. |
| When a BIG-IP APM OAuth access profile (Resource Server or Resource Client) is configured on a virtual server, undisclosed traffic can cause the apmd process to terminate. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. |