| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: pcm: Fix potential data race at PCM memory allocation helpers
The PCM memory allocation helpers have a sanity check against too many
buffer allocations. However, the check is performed without a proper
lock and the allocation isn't serialized; this allows user to allocate
more memories than predefined max size.
Practically seen, this isn't really a big problem, as it's more or
less some "soft limit" as a sanity check, and it's not possible to
allocate unlimitedly. But it's still better to address this for more
consistent behavior.
The patch covers the size check in do_alloc_pages() with the
card->memory_mutex, and increases the allocated size there for
preventing the further overflow. When the actual allocation fails,
the size is decreased accordingly. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-usb-v2: gl861: Fix null-ptr-deref in gl861_i2c_master_xfer
In gl861_i2c_master_xfer, msg is controlled by user. When msg[i].buf
is null and msg[i].len is zero, former checks on msg[i].buf would be
passed. Malicious data finally reach gl861_i2c_master_xfer. If accessing
msg[i].buf[0] without sanity check, null ptr deref would happen.
We add check on msg[i].len to prevent crash.
Similar commit:
commit 0ed554fd769a
("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()") |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix invalid free tracking in ext4_xattr_move_to_block()
In ext4_xattr_move_to_block(), the value of the extended attribute
which we need to move to an external block may be allocated by
kvmalloc() if the value is stored in an external inode. So at the end
of the function the code tried to check if this was the case by
testing entry->e_value_inum.
However, at this point, the pointer to the xattr entry is no longer
valid, because it was removed from the original location where it had
been stored. So we could end up calling kvfree() on a pointer which
was not allocated by kvmalloc(); or we could also potentially leak
memory by not freeing the buffer when it should be freed. Fix this by
storing whether it should be freed in a separate variable. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: pcie: fix possible NULL pointer dereference
It is possible that iwl_pci_probe() will fail and free the trans,
then afterwards iwl_pci_remove() will be called and crash by trying
to access trans which is already freed, fix it.
iwlwifi 0000:01:00.0: Detected crf-id 0xa5a5a5a2, cnv-id 0xa5a5a5a2
wfpm id 0xa5a5a5a2
iwlwifi 0000:01:00.0: Can't find a correct rfid for crf id 0x5a2
...
BUG: kernel NULL pointer dereference, address: 0000000000000028
...
RIP: 0010:iwl_pci_remove+0x12/0x30 [iwlwifi]
pci_device_remove+0x3e/0xb0
device_release_driver_internal+0x103/0x1f0
driver_detach+0x4c/0x90
bus_remove_driver+0x5c/0xd0
driver_unregister+0x31/0x50
pci_unregister_driver+0x40/0x90
iwl_pci_unregister_driver+0x15/0x20 [iwlwifi]
__exit_compat+0x9/0x98 [iwlwifi]
__x64_sys_delete_module+0x147/0x260 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/rockchip: dw_hdmi: cleanup drm encoder during unbind
This fixes a use-after-free crash during rmmod.
The DRM encoder is embedded inside the larger rockchip_hdmi,
which is allocated with the component. The component memory
gets freed before the main drm device is destroyed. Fix it
by running encoder cleanup before tearing down its container.
[moved encoder cleanup above clk_disable, similar to bind-error-path] |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race between balance and cancel/pause
Syzbot reported a panic that looks like this:
assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, in fs/btrfs/ioctl.c:465
------------[ cut here ]------------
kernel BUG at fs/btrfs/messages.c:259!
RIP: 0010:btrfs_assertfail+0x2c/0x30 fs/btrfs/messages.c:259
Call Trace:
<TASK>
btrfs_exclop_balance fs/btrfs/ioctl.c:465 [inline]
btrfs_ioctl_balance fs/btrfs/ioctl.c:3564 [inline]
btrfs_ioctl+0x531e/0x5b30 fs/btrfs/ioctl.c:4632
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x197/0x210 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The reproducer is running a balance and a cancel or pause in parallel.
The way balance finishes is a bit wonky, if we were paused we need to
save the balance_ctl in the fs_info, but clear it otherwise and cleanup.
However we rely on the return values being specific errors, or having a
cancel request or no pause request. If balance completes and returns 0,
but we have a pause or cancel request we won't do the appropriate
cleanup, and then the next time we try to start a balance we'll trip
this ASSERT.
The error handling is just wrong here, we always want to clean up,
unless we got -ECANCELLED and we set the appropriate pause flag in the
exclusive op. With this patch the reproducer ran for an hour without
tripping, previously it would trip in less than a few minutes. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: set goal start correctly in ext4_mb_normalize_request
We need to set ac_g_ex to notify the goal start used in
ext4_mb_find_by_goal. Set ac_g_ex instead of ac_f_ex in
ext4_mb_normalize_request.
Besides we should assure goal start is in range [first_data_block,
blocks_count) as ext4_mb_initialize_context does.
[ Added a check to make sure size is less than ar->pright; otherwise
we could end up passing an underflowed value of ar->pright - size to
ext4_get_group_no_and_offset(), which will trigger a BUG_ON later on.
- TYT ] |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries: fix possible memory leak in ibmebus_bus_init()
If device_register() returns error in ibmebus_bus_init(), name of kobject
which is allocated in dev_set_name() called in device_add() is leaked.
As comment of device_add() says, it should call put_device() to drop
the reference count that was set in device_initialize() when it fails,
so the name can be freed in kobject_cleanup(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Fix memory leak in rx_desc and tx_desc
Currently when ath12k_dp_cc_desc_init() is called we allocate
memory to rx_descs and tx_descs. In ath12k_dp_cc_cleanup(), during
descriptor cleanup rx_descs and tx_descs memory is not freed.
This is cause of memory leak. These allocated memory should be
freed in ath12k_dp_cc_cleanup.
In ath12k_dp_cc_desc_init(), we can save base address of rx_descs
and tx_descs. In ath12k_dp_cc_cleanup(), we can free rx_descs and
tx_descs memory using their base address.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Check valid rport returned by fc_bsg_to_rport()
Klocwork reported warning of rport maybe NULL and will be dereferenced.
rport returned by call to fc_bsg_to_rport() could be NULL and dereferenced.
Check valid rport returned by fc_bsg_to_rport(). |
| In the Linux kernel, the following vulnerability has been resolved:
interconnect: Fix locking for runpm vs reclaim
For cases where icc_bw_set() can be called in callbaths that could
deadlock against shrinker/reclaim, such as runpm resume, we need to
decouple the icc locking. Introduce a new icc_bw_lock for cases where
we need to serialize bw aggregation and update to decouple that from
paths that require memory allocation such as node/link creation/
destruction.
Fixes this lockdep splat:
======================================================
WARNING: possible circular locking dependency detected
6.2.0-rc8-debug+ #554 Not tainted
------------------------------------------------------
ring0/132 is trying to acquire lock:
ffffff80871916d0 (&gmu->lock){+.+.}-{3:3}, at: a6xx_pm_resume+0xf0/0x234
but task is already holding lock:
ffffffdb5aee57e8 (dma_fence_map){++++}-{0:0}, at: msm_job_run+0x68/0x150
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #4 (dma_fence_map){++++}-{0:0}:
__dma_fence_might_wait+0x74/0xc0
dma_resv_lockdep+0x1f4/0x2f4
do_one_initcall+0x104/0x2bc
kernel_init_freeable+0x344/0x34c
kernel_init+0x30/0x134
ret_from_fork+0x10/0x20
-> #3 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}:
fs_reclaim_acquire+0x80/0xa8
slab_pre_alloc_hook.constprop.0+0x40/0x25c
__kmem_cache_alloc_node+0x60/0x1cc
__kmalloc+0xd8/0x100
topology_parse_cpu_capacity+0x8c/0x178
get_cpu_for_node+0x88/0xc4
parse_cluster+0x1b0/0x28c
parse_cluster+0x8c/0x28c
init_cpu_topology+0x168/0x188
smp_prepare_cpus+0x24/0xf8
kernel_init_freeable+0x18c/0x34c
kernel_init+0x30/0x134
ret_from_fork+0x10/0x20
-> #2 (fs_reclaim){+.+.}-{0:0}:
__fs_reclaim_acquire+0x3c/0x48
fs_reclaim_acquire+0x54/0xa8
slab_pre_alloc_hook.constprop.0+0x40/0x25c
__kmem_cache_alloc_node+0x60/0x1cc
__kmalloc+0xd8/0x100
kzalloc.constprop.0+0x14/0x20
icc_node_create_nolock+0x4c/0xc4
icc_node_create+0x38/0x58
qcom_icc_rpmh_probe+0x1b8/0x248
platform_probe+0x70/0xc4
really_probe+0x158/0x290
__driver_probe_device+0xc8/0xe0
driver_probe_device+0x44/0x100
__driver_attach+0xf8/0x108
bus_for_each_dev+0x78/0xc4
driver_attach+0x2c/0x38
bus_add_driver+0xd0/0x1d8
driver_register+0xbc/0xf8
__platform_driver_register+0x30/0x3c
qnoc_driver_init+0x24/0x30
do_one_initcall+0x104/0x2bc
kernel_init_freeable+0x344/0x34c
kernel_init+0x30/0x134
ret_from_fork+0x10/0x20
-> #1 (icc_lock){+.+.}-{3:3}:
__mutex_lock+0xcc/0x3c8
mutex_lock_nested+0x30/0x44
icc_set_bw+0x88/0x2b4
_set_opp_bw+0x8c/0xd8
_set_opp+0x19c/0x300
dev_pm_opp_set_opp+0x84/0x94
a6xx_gmu_resume+0x18c/0x804
a6xx_pm_resume+0xf8/0x234
adreno_runtime_resume+0x2c/0x38
pm_generic_runtime_resume+0x30/0x44
__rpm_callback+0x15c/0x174
rpm_callback+0x78/0x7c
rpm_resume+0x318/0x524
__pm_runtime_resume+0x78/0xbc
adreno_load_gpu+0xc4/0x17c
msm_open+0x50/0x120
drm_file_alloc+0x17c/0x228
drm_open_helper+0x74/0x118
drm_open+0xa0/0x144
drm_stub_open+0xd4/0xe4
chrdev_open+0x1b8/0x1e4
do_dentry_open+0x2f8/0x38c
vfs_open+0x34/0x40
path_openat+0x64c/0x7b4
do_filp_open+0x54/0xc4
do_sys_openat2+0x9c/0x100
do_sys_open+0x50/0x7c
__arm64_sys_openat+0x28/0x34
invoke_syscall+0x8c/0x128
el0_svc_common.constprop.0+0xa0/0x11c
do_el0_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: ACPICA: check null return of ACPI_ALLOCATE_ZEROED in acpi_db_display_objects
ACPICA commit 0d5f467d6a0ba852ea3aad68663cbcbd43300fd4
ACPI_ALLOCATE_ZEROED may fails, object_info might be null and will cause
null pointer dereference later. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix assertion of exclop condition when starting balance
Balance as exclusive state is compatible with paused balance and device
add, which makes some things more complicated. The assertion of valid
states when starting from paused balance needs to take into account two
more states, the combinations can be hit when there are several threads
racing to start balance and device add. This won't typically happen when
the commands are started from command line.
Scenario 1: With exclusive_operation state == BTRFS_EXCLOP_NONE.
Concurrently adding multiple devices to the same mount point and
btrfs_exclop_finish executed finishes before assertion in
btrfs_exclop_balance, exclusive_operation will changed to
BTRFS_EXCLOP_NONE state which lead to assertion failed:
fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD,
in fs/btrfs/ioctl.c:456
Call Trace:
<TASK>
btrfs_exclop_balance+0x13c/0x310
? memdup_user+0xab/0xc0
? PTR_ERR+0x17/0x20
btrfs_ioctl_add_dev+0x2ee/0x320
btrfs_ioctl+0x9d5/0x10d0
? btrfs_ioctl_encoded_write+0xb80/0xb80
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x3c/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Scenario 2: With exclusive_operation state == BTRFS_EXCLOP_BALANCE_PAUSED.
Concurrently adding multiple devices to the same mount point and
btrfs_exclop_balance executed finish before the latter thread execute
assertion in btrfs_exclop_balance, exclusive_operation will changed to
BTRFS_EXCLOP_BALANCE_PAUSED state which lead to assertion failed:
fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
fs_info->exclusive_operation == BTRFS_EXCLOP_NONE,
fs/btrfs/ioctl.c:458
Call Trace:
<TASK>
btrfs_exclop_balance+0x240/0x410
? memdup_user+0xab/0xc0
? PTR_ERR+0x17/0x20
btrfs_ioctl_add_dev+0x2ee/0x320
btrfs_ioctl+0x9d5/0x10d0
? btrfs_ioctl_encoded_write+0xb80/0xb80
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x3c/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
An example of the failed assertion is below, which shows that the
paused balance is also needed to be checked.
root@syzkaller:/home/xsk# ./repro
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
[ 416.611428][ T7970] BTRFS info (device loop0): fs_info exclusive_operation: 0
Failed to add device /dev/vda, errno 14
[ 416.613973][ T7971] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.615456][ T7972] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.617528][ T7973] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.618359][ T7974] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.622589][ T7975] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.624034][ T7976] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.626420][ T7977] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.627643][ T7978] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.629006][ T7979] BTRFS info (device loop0): fs_info exclusive_operation: 3
[ 416.630298][ T7980] BTRFS info (device loop0): fs_info exclusive_operation: 3
Fai
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: ocb: don't leave if not joined
If there's no OCB state, don't ask the driver/mac80211 to
leave, since that's just confusing. Since set/clear the
chandef state, that's a simple check. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: mm: fix VA-range sanity check
Both create_mapping_noalloc() and update_mapping_prot() sanity-check
their 'virt' parameter, but the check itself doesn't make much sense.
The condition used today appears to be a historical accident.
The sanity-check condition:
if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
[ ... warning here ... ]
return;
}
... can only be true for the KASAN shadow region or the module region,
and there's no reason to exclude these specifically for creating and
updateing mappings.
When arm64 support was first upstreamed in commit:
c1cc1552616d0f35 ("arm64: MMU initialisation")
... the condition was:
if (virt < VMALLOC_START) {
[ ... warning here ... ]
return;
}
At the time, VMALLOC_START was the lowest kernel address, and this was
checking whether 'virt' would be translated via TTBR1.
Subsequently in commit:
14c127c957c1c607 ("arm64: mm: Flip kernel VA space")
... the condition was changed to:
if ((virt >= VA_START) && (virt < VMALLOC_START)) {
[ ... warning here ... ]
return;
}
This appear to have been a thinko. The commit moved the linear map to
the bottom of the kernel address space, with VMALLOC_START being at the
halfway point. The old condition would warn for changes to the linear
map below this, and at the time VA_START was the end of the linear map.
Subsequently we cleaned up the naming of VA_START in commit:
77ad4ce69321abbe ("arm64: memory: rename VA_START to PAGE_END")
... keeping the erroneous condition as:
if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
[ ... warning here ... ]
return;
}
Correct the condition to check against the start of the TTBR1 address
space, which is currently PAGE_OFFSET. This simplifies the logic, and
more clearly matches the "outside kernel range" message in the warning. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix potential use-after-free bug when trimming caps
When trimming the caps and just after the 'session->s_cap_lock' is
released in ceph_iterate_session_caps() the cap maybe removed by
another thread, and when using the stale cap memory in the callbacks
it will trigger use-after-free crash.
We need to check the existence of the cap just after the 'ci->i_ceph_lock'
being acquired. And do nothing if it's already removed. |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: fix missing hfs_bnode_get() in __hfs_bnode_create
Syzbot found a kernel BUG in hfs_bnode_put():
kernel BUG at fs/hfs/bnode.c:466!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 3634 Comm: kworker/u4:5 Not tainted 6.1.0-rc7-syzkaller-00190-g97ee9d1c1696 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
Workqueue: writeback wb_workfn (flush-7:0)
RIP: 0010:hfs_bnode_put+0x46f/0x480 fs/hfs/bnode.c:466
Code: 8a 80 ff e9 73 fe ff ff 89 d9 80 e1 07 80 c1 03 38 c1 0f 8c a0 fe ff ff 48 89 df e8 db 8a 80 ff e9 93 fe ff ff e8 a1 68 2c ff <0f> 0b e8 9a 68 2c ff 0f 0b 0f 1f 84 00 00 00 00 00 55 41 57 41 56
RSP: 0018:ffffc90003b4f258 EFLAGS: 00010293
RAX: ffffffff825e318f RBX: 0000000000000000 RCX: ffff8880739dd7c0
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc90003b4f430 R08: ffffffff825e2d9b R09: ffffed10045157d1
R10: ffffed10045157d1 R11: 1ffff110045157d0 R12: ffff8880228abe80
R13: ffff88807016c000 R14: dffffc0000000000 R15: ffff8880228abe00
FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa6ebe88718 CR3: 000000001e93d000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
hfs_write_inode+0x1bc/0xb40
write_inode fs/fs-writeback.c:1440 [inline]
__writeback_single_inode+0x4d6/0x670 fs/fs-writeback.c:1652
writeback_sb_inodes+0xb3b/0x18f0 fs/fs-writeback.c:1878
__writeback_inodes_wb+0x125/0x420 fs/fs-writeback.c:1949
wb_writeback+0x440/0x7b0 fs/fs-writeback.c:2054
wb_check_start_all fs/fs-writeback.c:2176 [inline]
wb_do_writeback fs/fs-writeback.c:2202 [inline]
wb_workfn+0x827/0xef0 fs/fs-writeback.c:2235
process_one_work+0x877/0xdb0 kernel/workqueue.c:2289
worker_thread+0xb14/0x1330 kernel/workqueue.c:2436
kthread+0x266/0x300 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK>
The BUG_ON() is triggered at here:
/* Dispose of resources used by a node */
void hfs_bnode_put(struct hfs_bnode *node)
{
if (node) {
<skipped>
BUG_ON(!atomic_read(&node->refcnt)); <- we have issue here!!!!
<skipped>
}
}
By tracing the refcnt, I found the node is created by hfs_bmap_alloc()
with refcnt 1. Then the node is used by hfs_btree_write(). There is a
missing of hfs_bnode_get() after find the node. The issue happened in
following path:
<alloc>
hfs_bmap_alloc
hfs_bnode_find
__hfs_bnode_create <- allocate a new node with refcnt 1.
hfs_bnode_put <- decrease the refcnt
<write>
hfs_btree_write
hfs_bnode_find
__hfs_bnode_create
hfs_bnode_findhash <- find the node without refcnt increased.
hfs_bnode_put <- trigger the BUG_ON() since refcnt is 0. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/idle: mark arch_cpu_idle() noinstr
linux-next commit ("cpuidle: tracing: Warn about !rcu_is_watching()")
adds a new warning which hits on s390's arch_cpu_idle() function:
RCU not on for: arch_cpu_idle+0x0/0x28
WARNING: CPU: 2 PID: 0 at include/linux/trace_recursion.h:162 arch_ftrace_ops_list_func+0x24c/0x258
Modules linked in:
CPU: 2 PID: 0 Comm: swapper/2 Not tainted 6.2.0-rc6-next-20230202 #4
Hardware name: IBM 8561 T01 703 (z/VM 7.3.0)
Krnl PSW : 0404d00180000000 00000000002b55c0 (arch_ftrace_ops_list_func+0x250/0x258)
R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3
Krnl GPRS: c0000000ffffbfff 0000000080000002 0000000000000026 0000000000000000
0000037ffffe3a28 0000037ffffe3a20 0000000000000000 0000000000000000
0000000000000000 0000000000f4acf6 00000000001044f0 0000037ffffe3cb0
0000000000000000 0000000000000000 00000000002b55bc 0000037ffffe3bb8
Krnl Code: 00000000002b55b0: c02000840051 larl %r2,0000000001335652
00000000002b55b6: c0e5fff512d1 brasl %r14,0000000000157b58
#00000000002b55bc: af000000 mc 0,0
>00000000002b55c0: a7f4ffe7 brc 15,00000000002b558e
00000000002b55c4: 0707 bcr 0,%r7
00000000002b55c6: 0707 bcr 0,%r7
00000000002b55c8: eb6ff0480024 stmg %r6,%r15,72(%r15)
00000000002b55ce: b90400ef lgr %r14,%r15
Call Trace:
[<00000000002b55c0>] arch_ftrace_ops_list_func+0x250/0x258
([<00000000002b55bc>] arch_ftrace_ops_list_func+0x24c/0x258)
[<0000000000f5f0fc>] ftrace_common+0x1c/0x20
[<00000000001044f6>] arch_cpu_idle+0x6/0x28
[<0000000000f4acf6>] default_idle_call+0x76/0x128
[<00000000001cc374>] do_idle+0xf4/0x1b0
[<00000000001cc6ce>] cpu_startup_entry+0x36/0x40
[<0000000000119d00>] smp_start_secondary+0x140/0x150
[<0000000000f5d2ae>] restart_int_handler+0x6e/0x90
Mark arch_cpu_idle() noinstr like all other architectures with
CONFIG_ARCH_WANTS_NO_INSTR (should) have it to fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix infinite loop in nilfs_mdt_get_block()
If the disk image that nilfs2 mounts is corrupted and a virtual block
address obtained by block lookup for a metadata file is invalid,
nilfs_bmap_lookup_at_level() may return the same internal return code as
-ENOENT, meaning the block does not exist in the metadata file.
This duplication of return codes confuses nilfs_mdt_get_block(), causing
it to read and create a metadata block indefinitely.
In particular, if this happens to the inode metadata file, ifile,
semaphore i_rwsem can be left held, causing task hangs in lock_mount.
Fix this issue by making nilfs_bmap_lookup_at_level() treat virtual block
address translation failures with -ENOENT as metadata corruption instead
of returning the error code. |
| In the Linux kernel, the following vulnerability has been resolved:
devlink: report devlink_port_type_warn source device
devlink_port_type_warn is scheduled for port devlink and warning
when the port type is not set. But from this warning it is not easy
found out which device (driver) has no devlink port set.
[ 3709.975552] Type was not set for devlink port.
[ 3709.975579] WARNING: CPU: 1 PID: 13092 at net/devlink/leftover.c:6775 devlink_port_type_warn+0x11/0x20
[ 3709.993967] Modules linked in: openvswitch nf_conncount nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nfnetlink bluetooth rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs vhost_net vhost vhost_iotlb tap tun bridge stp llc qrtr intel_rapl_msr intel_rapl_common i10nm_edac nfit libnvdimm x86_pkg_temp_thermal mlx5_ib intel_powerclamp coretemp dell_wmi ledtrig_audio sparse_keymap ipmi_ssif kvm_intel ib_uverbs rfkill ib_core video kvm iTCO_wdt acpi_ipmi intel_vsec irqbypass ipmi_si iTCO_vendor_support dcdbas ipmi_devintf mei_me ipmi_msghandler rapl mei intel_cstate isst_if_mmio isst_if_mbox_pci dell_smbios intel_uncore isst_if_common i2c_i801 dell_wmi_descriptor wmi_bmof i2c_smbus intel_pch_thermal pcspkr acpi_power_meter xfs libcrc32c sd_mod sg nvme_tcp mgag200 i2c_algo_bit nvme_fabrics drm_shmem_helper drm_kms_helper nvme syscopyarea ahci sysfillrect sysimgblt nvme_core fb_sys_fops crct10dif_pclmul libahci mlx5_core sfc crc32_pclmul nvme_common drm
[ 3709.994030] crc32c_intel mtd t10_pi mlxfw libata tg3 mdio megaraid_sas psample ghash_clmulni_intel pci_hyperv_intf wmi dm_multipath sunrpc dm_mirror dm_region_hash dm_log dm_mod be2iscsi bnx2i cnic uio cxgb4i cxgb4 tls libcxgbi libcxgb qla4xxx iscsi_boot_sysfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi fuse
[ 3710.108431] CPU: 1 PID: 13092 Comm: kworker/1:1 Kdump: loaded Not tainted 5.14.0-319.el9.x86_64 #1
[ 3710.108435] Hardware name: Dell Inc. PowerEdge R750/0PJ80M, BIOS 1.8.2 09/14/2022
[ 3710.108437] Workqueue: events devlink_port_type_warn
[ 3710.108440] RIP: 0010:devlink_port_type_warn+0x11/0x20
[ 3710.108443] Code: 84 76 fe ff ff 48 c7 03 20 0e 1a ad 31 c0 e9 96 fd ff ff 66 0f 1f 44 00 00 0f 1f 44 00 00 48 c7 c7 18 24 4e ad e8 ef 71 62 ff <0f> 0b c3 cc cc cc cc 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 f6 87
[ 3710.108445] RSP: 0018:ff3b6d2e8b3c7e90 EFLAGS: 00010282
[ 3710.108447] RAX: 0000000000000000 RBX: ff366d6580127080 RCX: 0000000000000027
[ 3710.108448] RDX: 0000000000000027 RSI: 00000000ffff86de RDI: ff366d753f41f8c8
[ 3710.108449] RBP: ff366d658ff5a0c0 R08: ff366d753f41f8c0 R09: ff3b6d2e8b3c7e18
[ 3710.108450] R10: 0000000000000001 R11: 0000000000000023 R12: ff366d753f430600
[ 3710.108451] R13: ff366d753f436900 R14: 0000000000000000 R15: ff366d753f436905
[ 3710.108452] FS: 0000000000000000(0000) GS:ff366d753f400000(0000) knlGS:0000000000000000
[ 3710.108453] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3710.108454] CR2: 00007f1c57bc74e0 CR3: 000000111d26a001 CR4: 0000000000773ee0
[ 3710.108456] PKRU: 55555554
[ 3710.108457] Call Trace:
[ 3710.108458] <TASK>
[ 3710.108459] process_one_work+0x1e2/0x3b0
[ 3710.108466] ? rescuer_thread+0x390/0x390
[ 3710.108468] worker_thread+0x50/0x3a0
[ 3710.108471] ? rescuer_thread+0x390/0x390
[ 3710.108473] kthread+0xdd/0x100
[ 3710.108477] ? kthread_complete_and_exit+0x20/0x20
[ 3710.108479] ret_from_fork+0x1f/0x30
[ 3710.108485] </TASK>
[ 3710.108486] ---[ end trace 1b4b23cd0c65d6a0 ]---
After patch:
[ 402.473064] ice 0000:41:00.0: Type was not set for devlink port.
[ 402.473064] ice 0000:41:00.1: Type was not set for devlink port. |