CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
net: Fix icmp host relookup triggering ip_rt_bug
arp link failure may trigger ip_rt_bug while xfrm enabled, call trace is:
WARNING: CPU: 0 PID: 0 at net/ipv4/route.c:1241 ip_rt_bug+0x14/0x20
Modules linked in:
CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.0-rc6-00077-g2e1b3cc9d7f7
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:ip_rt_bug+0x14/0x20
Call Trace:
<IRQ>
ip_send_skb+0x14/0x40
__icmp_send+0x42d/0x6a0
ipv4_link_failure+0xe2/0x1d0
arp_error_report+0x3c/0x50
neigh_invalidate+0x8d/0x100
neigh_timer_handler+0x2e1/0x330
call_timer_fn+0x21/0x120
__run_timer_base.part.0+0x1c9/0x270
run_timer_softirq+0x4c/0x80
handle_softirqs+0xac/0x280
irq_exit_rcu+0x62/0x80
sysvec_apic_timer_interrupt+0x77/0x90
The script below reproduces this scenario:
ip xfrm policy add src 0.0.0.0/0 dst 0.0.0.0/0 \
dir out priority 0 ptype main flag localok icmp
ip l a veth1 type veth
ip a a 192.168.141.111/24 dev veth0
ip l s veth0 up
ping 192.168.141.155 -c 1
icmp_route_lookup() create input routes for locally generated packets
while xfrm relookup ICMP traffic.Then it will set input route
(dst->out = ip_rt_bug) to skb for DESTUNREACH.
For ICMP err triggered by locally generated packets, dst->dev of output
route is loopback. Generally, xfrm relookup verification is not required
on loopback interfaces (net.ipv4.conf.lo.disable_xfrm = 1).
Skip icmp relookup for locally generated packets to fix it. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: fix OOB devmap writes when deleting elements
Jordy reported issue against XSKMAP which also applies to DEVMAP - the
index used for accessing map entry, due to being a signed integer,
causes the OOB writes. Fix is simple as changing the type from int to
u32, however, when compared to XSKMAP case, one more thing needs to be
addressed.
When map is released from system via dev_map_free(), we iterate through
all of the entries and an iterator variable is also an int, which
implies OOB accesses. Again, change it to be u32.
Example splat below:
[ 160.724676] BUG: unable to handle page fault for address: ffffc8fc2c001000
[ 160.731662] #PF: supervisor read access in kernel mode
[ 160.736876] #PF: error_code(0x0000) - not-present page
[ 160.742095] PGD 0 P4D 0
[ 160.744678] Oops: Oops: 0000 [#1] PREEMPT SMP
[ 160.749106] CPU: 1 UID: 0 PID: 520 Comm: kworker/u145:12 Not tainted 6.12.0-rc1+ #487
[ 160.757050] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019
[ 160.767642] Workqueue: events_unbound bpf_map_free_deferred
[ 160.773308] RIP: 0010:dev_map_free+0x77/0x170
[ 160.777735] Code: 00 e8 fd 91 ed ff e8 b8 73 ed ff 41 83 7d 18 19 74 6e 41 8b 45 24 49 8b bd f8 00 00 00 31 db 85 c0 74 48 48 63 c3 48 8d 04 c7 <48> 8b 28 48 85 ed 74 30 48 8b 7d 18 48 85 ff 74 05 e8 b3 52 fa ff
[ 160.796777] RSP: 0018:ffffc9000ee1fe38 EFLAGS: 00010202
[ 160.802086] RAX: ffffc8fc2c001000 RBX: 0000000080000000 RCX: 0000000000000024
[ 160.809331] RDX: 0000000000000000 RSI: 0000000000000024 RDI: ffffc9002c001000
[ 160.816576] RBP: 0000000000000000 R08: 0000000000000023 R09: 0000000000000001
[ 160.823823] R10: 0000000000000001 R11: 00000000000ee6b2 R12: dead000000000122
[ 160.831066] R13: ffff88810c928e00 R14: ffff8881002df405 R15: 0000000000000000
[ 160.838310] FS: 0000000000000000(0000) GS:ffff8897e0c40000(0000) knlGS:0000000000000000
[ 160.846528] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 160.852357] CR2: ffffc8fc2c001000 CR3: 0000000005c32006 CR4: 00000000007726f0
[ 160.859604] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 160.866847] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 160.874092] PKRU: 55555554
[ 160.876847] Call Trace:
[ 160.879338] <TASK>
[ 160.881477] ? __die+0x20/0x60
[ 160.884586] ? page_fault_oops+0x15a/0x450
[ 160.888746] ? search_extable+0x22/0x30
[ 160.892647] ? search_bpf_extables+0x5f/0x80
[ 160.896988] ? exc_page_fault+0xa9/0x140
[ 160.900973] ? asm_exc_page_fault+0x22/0x30
[ 160.905232] ? dev_map_free+0x77/0x170
[ 160.909043] ? dev_map_free+0x58/0x170
[ 160.912857] bpf_map_free_deferred+0x51/0x90
[ 160.917196] process_one_work+0x142/0x370
[ 160.921272] worker_thread+0x29e/0x3b0
[ 160.925082] ? rescuer_thread+0x4b0/0x4b0
[ 160.929157] kthread+0xd4/0x110
[ 160.932355] ? kthread_park+0x80/0x80
[ 160.936079] ret_from_fork+0x2d/0x50
[ 160.943396] ? kthread_park+0x80/0x80
[ 160.950803] ret_from_fork_asm+0x11/0x20
[ 160.958482] </TASK> |
In the Linux kernel, the following vulnerability has been resolved:
xsk: fix OOB map writes when deleting elements
Jordy says:
"
In the xsk_map_delete_elem function an unsigned integer
(map->max_entries) is compared with a user-controlled signed integer
(k). Due to implicit type conversion, a large unsigned value for
map->max_entries can bypass the intended bounds check:
if (k >= map->max_entries)
return -EINVAL;
This allows k to hold a negative value (between -2147483648 and -2),
which is then used as an array index in m->xsk_map[k], which results
in an out-of-bounds access.
spin_lock_bh(&m->lock);
map_entry = &m->xsk_map[k]; // Out-of-bounds map_entry
old_xs = unrcu_pointer(xchg(map_entry, NULL)); // Oob write
if (old_xs)
xsk_map_sock_delete(old_xs, map_entry);
spin_unlock_bh(&m->lock);
The xchg operation can then be used to cause an out-of-bounds write.
Moreover, the invalid map_entry passed to xsk_map_sock_delete can lead
to further memory corruption.
"
It indeed results in following splat:
[76612.897343] BUG: unable to handle page fault for address: ffffc8fc2e461108
[76612.904330] #PF: supervisor write access in kernel mode
[76612.909639] #PF: error_code(0x0002) - not-present page
[76612.914855] PGD 0 P4D 0
[76612.917431] Oops: Oops: 0002 [#1] PREEMPT SMP
[76612.921859] CPU: 11 UID: 0 PID: 10318 Comm: a.out Not tainted 6.12.0-rc1+ #470
[76612.929189] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019
[76612.939781] RIP: 0010:xsk_map_delete_elem+0x2d/0x60
[76612.944738] Code: 00 00 41 54 55 53 48 63 2e 3b 6f 24 73 38 4c 8d a7 f8 00 00 00 48 89 fb 4c 89 e7 e8 2d bf 05 00 48 8d b4 eb 00 01 00 00 31 ff <48> 87 3e 48 85 ff 74 05 e8 16 ff ff ff 4c 89 e7 e8 3e bc 05 00 31
[76612.963774] RSP: 0018:ffffc9002e407df8 EFLAGS: 00010246
[76612.969079] RAX: 0000000000000000 RBX: ffffc9002e461000 RCX: 0000000000000000
[76612.976323] RDX: 0000000000000001 RSI: ffffc8fc2e461108 RDI: 0000000000000000
[76612.983569] RBP: ffffffff80000001 R08: 0000000000000000 R09: 0000000000000007
[76612.990812] R10: ffffc9002e407e18 R11: ffff888108a38858 R12: ffffc9002e4610f8
[76612.998060] R13: ffff888108a38858 R14: 00007ffd1ae0ac78 R15: ffffc9002e4610c0
[76613.005303] FS: 00007f80b6f59740(0000) GS:ffff8897e0ec0000(0000) knlGS:0000000000000000
[76613.013517] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[76613.019349] CR2: ffffc8fc2e461108 CR3: 000000011e3ef001 CR4: 00000000007726f0
[76613.026595] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[76613.033841] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[76613.041086] PKRU: 55555554
[76613.043842] Call Trace:
[76613.046331] <TASK>
[76613.048468] ? __die+0x20/0x60
[76613.051581] ? page_fault_oops+0x15a/0x450
[76613.055747] ? search_extable+0x22/0x30
[76613.059649] ? search_bpf_extables+0x5f/0x80
[76613.063988] ? exc_page_fault+0xa9/0x140
[76613.067975] ? asm_exc_page_fault+0x22/0x30
[76613.072229] ? xsk_map_delete_elem+0x2d/0x60
[76613.076573] ? xsk_map_delete_elem+0x23/0x60
[76613.080914] __sys_bpf+0x19b7/0x23c0
[76613.084555] __x64_sys_bpf+0x1a/0x20
[76613.088194] do_syscall_64+0x37/0xb0
[76613.091832] entry_SYSCALL_64_after_hwframe+0x4b/0x53
[76613.096962] RIP: 0033:0x7f80b6d1e88d
[76613.100592] Code: 5b 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 b5 0f 00 f7 d8 64 89 01 48
[76613.119631] RSP: 002b:00007ffd1ae0ac68 EFLAGS: 00000206 ORIG_RAX: 0000000000000141
[76613.131330] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f80b6d1e88d
[76613.142632] RDX: 0000000000000098 RSI: 00007ffd1ae0ad20 RDI: 0000000000000003
[76613.153967] RBP: 00007ffd1ae0adc0 R08: 0000000000000000 R09: 0000000000000000
[76613.166030] R10: 00007f80b6f77040 R11: 0000000000000206 R12: 00007ffd1ae0aed8
[76613.177130] R13: 000055ddf42ce1e9 R14: 000055ddf42d0d98 R15: 00
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
mm/mempolicy: fix migrate_to_node() assuming there is at least one VMA in a MM
We currently assume that there is at least one VMA in a MM, which isn't
true.
So we might end up having find_vma() return NULL, to then de-reference
NULL. So properly handle find_vma() returning NULL.
This fixes the report:
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
CPU: 1 UID: 0 PID: 6021 Comm: syz-executor284 Not tainted 6.12.0-rc7-syzkaller-00187-gf868cd251776 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/30/2024
RIP: 0010:migrate_to_node mm/mempolicy.c:1090 [inline]
RIP: 0010:do_migrate_pages+0x403/0x6f0 mm/mempolicy.c:1194
Code: ...
RSP: 0018:ffffc9000375fd08 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffc9000375fd78 RCX: 0000000000000000
RDX: ffff88807e171300 RSI: dffffc0000000000 RDI: ffff88803390c044
RBP: ffff88807e171428 R08: 0000000000000014 R09: fffffbfff2039ef1
R10: ffffffff901cf78f R11: 0000000000000000 R12: 0000000000000003
R13: ffffc9000375fe90 R14: ffffc9000375fe98 R15: ffffc9000375fdf8
FS: 00005555919e1380(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005555919e1ca8 CR3: 000000007f12a000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
kernel_migrate_pages+0x5b2/0x750 mm/mempolicy.c:1709
__do_sys_migrate_pages mm/mempolicy.c:1727 [inline]
__se_sys_migrate_pages mm/mempolicy.c:1723 [inline]
__x64_sys_migrate_pages+0x96/0x100 mm/mempolicy.c:1723
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
[akpm@linux-foundation.org: add unlikely()] |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: do not leave dangling sk pointer on error in l2cap_sock_create()
bt_sock_alloc() allocates the sk object and attaches it to the provided
sock object. On error l2cap_sock_alloc() frees the sk object, but the
dangling pointer is still attached to the sock object, which may create
use-after-free in other code. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: RFCOMM: avoid leaving dangling sk pointer in rfcomm_sock_alloc()
bt_sock_alloc() attaches allocated sk object to the provided sock object.
If rfcomm_dlc_alloc() fails, we release the sk object, but leave the
dangling pointer in the sock object, which may cause use-after-free.
Fix this by swapping calls to bt_sock_alloc() and rfcomm_dlc_alloc(). |
In the Linux kernel, the following vulnerability has been resolved:
net: ieee802154: do not leave a dangling sk pointer in ieee802154_create()
sock_init_data() attaches the allocated sk object to the provided sock
object. If ieee802154_create() fails later, the allocated sk object is
freed, but the dangling pointer remains in the provided sock object, which
may allow use-after-free.
Clear the sk pointer in the sock object on error. |
In the Linux kernel, the following vulnerability has been resolved:
nfsd: make sure exp active before svc_export_show
The function `e_show` was called with protection from RCU. This only
ensures that `exp` will not be freed. Therefore, the reference count for
`exp` can drop to zero, which will trigger a refcount use-after-free
warning when `exp_get` is called. To resolve this issue, use
`cache_get_rcu` to ensure that `exp` remains active.
------------[ cut here ]------------
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 3 PID: 819 at lib/refcount.c:25
refcount_warn_saturate+0xb1/0x120
CPU: 3 UID: 0 PID: 819 Comm: cat Not tainted 6.12.0-rc3+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.1-2.fc37 04/01/2014
RIP: 0010:refcount_warn_saturate+0xb1/0x120
...
Call Trace:
<TASK>
e_show+0x20b/0x230 [nfsd]
seq_read_iter+0x589/0x770
seq_read+0x1e5/0x270
vfs_read+0x125/0x530
ksys_read+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix usage slab after free
[ +0.000021] BUG: KASAN: slab-use-after-free in drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000027] Read of size 8 at addr ffff8881b8605f88 by task amd_pci_unplug/2147
[ +0.000023] CPU: 6 PID: 2147 Comm: amd_pci_unplug Not tainted 6.10.0+ #1
[ +0.000016] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020
[ +0.000016] Call Trace:
[ +0.000008] <TASK>
[ +0.000009] dump_stack_lvl+0x76/0xa0
[ +0.000017] print_report+0xce/0x5f0
[ +0.000017] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000019] ? srso_return_thunk+0x5/0x5f
[ +0.000015] ? kasan_complete_mode_report_info+0x72/0x200
[ +0.000016] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000019] kasan_report+0xbe/0x110
[ +0.000015] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000023] __asan_report_load8_noabort+0x14/0x30
[ +0.000014] drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000020] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? __kasan_check_write+0x14/0x30
[ +0.000016] ? __pfx_drm_sched_entity_flush+0x10/0x10 [gpu_sched]
[ +0.000020] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? __kasan_check_write+0x14/0x30
[ +0.000013] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? enable_work+0x124/0x220
[ +0.000015] ? __pfx_enable_work+0x10/0x10
[ +0.000013] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? free_large_kmalloc+0x85/0xf0
[ +0.000016] drm_sched_entity_destroy+0x18/0x30 [gpu_sched]
[ +0.000020] amdgpu_vce_sw_fini+0x55/0x170 [amdgpu]
[ +0.000735] ? __kasan_check_read+0x11/0x20
[ +0.000016] vce_v4_0_sw_fini+0x80/0x110 [amdgpu]
[ +0.000726] amdgpu_device_fini_sw+0x331/0xfc0 [amdgpu]
[ +0.000679] ? mutex_unlock+0x80/0xe0
[ +0.000017] ? __pfx_amdgpu_device_fini_sw+0x10/0x10 [amdgpu]
[ +0.000662] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? __kasan_check_write+0x14/0x30
[ +0.000013] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? mutex_unlock+0x80/0xe0
[ +0.000016] amdgpu_driver_release_kms+0x16/0x80 [amdgpu]
[ +0.000663] drm_minor_release+0xc9/0x140 [drm]
[ +0.000081] drm_release+0x1fd/0x390 [drm]
[ +0.000082] __fput+0x36c/0xad0
[ +0.000018] __fput_sync+0x3c/0x50
[ +0.000014] __x64_sys_close+0x7d/0xe0
[ +0.000014] x64_sys_call+0x1bc6/0x2680
[ +0.000014] do_syscall_64+0x70/0x130
[ +0.000014] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? irqentry_exit_to_user_mode+0x60/0x190
[ +0.000015] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? irqentry_exit+0x43/0x50
[ +0.000012] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? exc_page_fault+0x7c/0x110
[ +0.000015] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ +0.000014] RIP: 0033:0x7ffff7b14f67
[ +0.000013] Code: ff e8 0d 16 02 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 73 ba f7 ff
[ +0.000026] RSP: 002b:00007fffffffe378 EFLAGS: 00000246 ORIG_RAX: 0000000000000003
[ +0.000019] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007ffff7b14f67
[ +0.000014] RDX: 0000000000000000 RSI: 00007ffff7f6f47a RDI: 0000000000000003
[ +0.000014] RBP: 00007fffffffe3a0 R08: 0000555555569890 R09: 0000000000000000
[ +0.000014] R10: 0000000000000000 R11: 0000000000000246 R12: 00007fffffffe5c8
[ +0.000013] R13: 00005555555552a9 R14: 0000555555557d48 R15: 00007ffff7ffd040
[ +0.000020] </TASK>
[ +0.000016] Allocated by task 383 on cpu 7 at 26.880319s:
[ +0.000014] kasan_save_stack+0x28/0x60
[ +0.000008] kasan_save_track+0x18/0x70
[ +0.000007] kasan_save_alloc_info+0x38/0x60
[ +0.000007] __kasan_kmalloc+0xc1/0xd0
[ +0.000007] kmalloc_trace_noprof+0x180/0x380
[ +0.000007] drm_sched_init+0x411/0xec0 [gpu_sched]
[ +0.000012] amdgpu_device_init+0x695f/0xa610 [amdgpu]
[ +0.000658] amdgpu_driver_load_kms+0x1a/0x120 [amdgpu]
[ +0.000662] amdgpu_pci_p
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
udmabuf: change folios array from kmalloc to kvmalloc
When PAGE_SIZE 4096, MAX_PAGE_ORDER 10, 64bit machine,
page_alloc only support 4MB.
If above this, trigger this warn and return NULL.
udmabuf can change size limit, if change it to 3072(3GB), and then alloc
3GB udmabuf, will fail create.
[ 4080.876581] ------------[ cut here ]------------
[ 4080.876843] WARNING: CPU: 3 PID: 2015 at mm/page_alloc.c:4556 __alloc_pages+0x2c8/0x350
[ 4080.878839] RIP: 0010:__alloc_pages+0x2c8/0x350
[ 4080.879470] Call Trace:
[ 4080.879473] <TASK>
[ 4080.879473] ? __alloc_pages+0x2c8/0x350
[ 4080.879475] ? __warn.cold+0x8e/0xe8
[ 4080.880647] ? __alloc_pages+0x2c8/0x350
[ 4080.880909] ? report_bug+0xff/0x140
[ 4080.881175] ? handle_bug+0x3c/0x80
[ 4080.881556] ? exc_invalid_op+0x17/0x70
[ 4080.881559] ? asm_exc_invalid_op+0x1a/0x20
[ 4080.882077] ? udmabuf_create+0x131/0x400
Because MAX_PAGE_ORDER, kmalloc can max alloc 4096 * (1 << 10), 4MB
memory, each array entry is pointer(8byte), so can save 524288 pages(2GB).
Further more, costly order(order 3) may not be guaranteed that it can be
applied for, due to fragmentation.
This patch change udmabuf array use kvmalloc_array, this can fallback
alloc into vmalloc, which can guarantee allocation for any size and does
not affect the performance of kmalloc allocations. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: coex: check NULL return of kmalloc in btc_fw_set_monreg()
kmalloc may fail, return value might be NULL and will cause
NULL pointer dereference. Add check NULL return of kmalloc in
btc_fw_set_monreg(). |
In the Linux kernel, the following vulnerability has been resolved:
iommu/s390: Implement blocking domain
This fixes a crash when surprise hot-unplugging a PCI device. This crash
happens because during hot-unplug __iommu_group_set_domain_nofail()
attaching the default domain fails when the platform no longer
recognizes the device as it has already been removed and we end up with
a NULL domain pointer and UAF. This is exactly the case referred to in
the second comment in __iommu_device_set_domain() and just as stated
there if we can instead attach the blocking domain the UAF is prevented
as this can handle the already removed device. Implement the blocking
domain to use this handling. With this change, the crash is fixed but
we still hit a warning attempting to change DMA ownership on a blocked
device. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Move events notifier registration to be after device registration
Move pkey change work initialization and cleanup from device resources
stage to notifier stage, since this is the stage which handles this work
events.
Fix a race between the device deregistration and pkey change work by moving
MLX5_IB_STAGE_DEVICE_NOTIFIER to be after MLX5_IB_STAGE_IB_REG in order to
ensure that the notifier is deregistered before the device during cleanup.
Which ensures there are no works that are being executed after the
device has already unregistered which can cause the panic below.
BUG: kernel NULL pointer dereference, address: 0000000000000000
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 630071 Comm: kworker/1:2 Kdump: loaded Tainted: G W OE --------- --- 5.14.0-162.6.1.el9_1.x86_64 #1
Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS 090008 02/27/2023
Workqueue: events pkey_change_handler [mlx5_ib]
RIP: 0010:setup_qp+0x38/0x1f0 [mlx5_ib]
Code: ee 41 54 45 31 e4 55 89 f5 53 48 89 fb 48 83 ec 20 8b 77 08 65 48 8b 04 25 28 00 00 00 48 89 44 24 18 48 8b 07 48 8d 4c 24 16 <4c> 8b 38 49 8b 87 80 0b 00 00 4c 89 ff 48 8b 80 08 05 00 00 8b 40
RSP: 0018:ffffbcc54068be20 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff954054494128 RCX: ffffbcc54068be36
RDX: ffff954004934000 RSI: 0000000000000001 RDI: ffff954054494128
RBP: 0000000000000023 R08: ffff954001be2c20 R09: 0000000000000001
R10: ffff954001be2c20 R11: ffff9540260133c0 R12: 0000000000000000
R13: 0000000000000023 R14: 0000000000000000 R15: ffff9540ffcb0905
FS: 0000000000000000(0000) GS:ffff9540ffc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000010625c001 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
mlx5_ib_gsi_pkey_change+0x20/0x40 [mlx5_ib]
process_one_work+0x1e8/0x3c0
worker_thread+0x50/0x3b0
? rescuer_thread+0x380/0x380
kthread+0x149/0x170
? set_kthread_struct+0x50/0x50
ret_from_fork+0x22/0x30
Modules linked in: rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) mlx5_fwctl(OE) fwctl(OE) ib_uverbs(OE) mlx5_core(OE) mlxdevm(OE) ib_core(OE) mlx_compat(OE) psample mlxfw(OE) tls knem(OE) netconsole nfsv3 nfs_acl nfs lockd grace fscache netfs qrtr rfkill sunrpc intel_rapl_msr intel_rapl_common rapl hv_balloon hv_utils i2c_piix4 pcspkr joydev fuse ext4 mbcache jbd2 sr_mod sd_mod cdrom t10_pi sg ata_generic pci_hyperv pci_hyperv_intf hyperv_drm drm_shmem_helper drm_kms_helper hv_storvsc syscopyarea hv_netvsc sysfillrect sysimgblt hid_hyperv fb_sys_fops scsi_transport_fc hyperv_keyboard drm ata_piix crct10dif_pclmul crc32_pclmul crc32c_intel libata ghash_clmulni_intel hv_vmbus serio_raw [last unloaded: ib_core]
CR2: 0000000000000000
---[ end trace f6f8be4eae12f7bc ]--- |
In the Linux kernel, the following vulnerability has been resolved:
zram: fix NULL pointer in comp_algorithm_show()
LTP reported a NULL pointer dereference as followed:
CPU: 7 UID: 0 PID: 5995 Comm: cat Kdump: loaded Not tainted 6.12.0-rc6+ #3
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 40400005 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __pi_strcmp+0x24/0x140
lr : zcomp_available_show+0x60/0x100 [zram]
sp : ffff800088b93b90
x29: ffff800088b93b90 x28: 0000000000000001 x27: 0000000000400cc0
x26: 0000000000000ffe x25: ffff80007b3e2388 x24: 0000000000000000
x23: ffff80007b3e2390 x22: ffff0004041a9000 x21: ffff80007b3e2900
x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: ffff80007b3e2900 x9 : ffff80007b3cb280
x8 : 0101010101010101 x7 : 0000000000000000 x6 : 0000000000000000
x5 : 0000000000000040 x4 : 0000000000000000 x3 : 00656c722d6f7a6c
x2 : 0000000000000000 x1 : ffff80007b3e2900 x0 : 0000000000000000
Call trace:
__pi_strcmp+0x24/0x140
comp_algorithm_show+0x40/0x70 [zram]
dev_attr_show+0x28/0x80
sysfs_kf_seq_show+0x90/0x140
kernfs_seq_show+0x34/0x48
seq_read_iter+0x1d4/0x4e8
kernfs_fop_read_iter+0x40/0x58
new_sync_read+0x9c/0x168
vfs_read+0x1a8/0x1f8
ksys_read+0x74/0x108
__arm64_sys_read+0x24/0x38
invoke_syscall+0x50/0x120
el0_svc_common.constprop.0+0xc8/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x38/0x138
el0t_64_sync_handler+0xc0/0xc8
el0t_64_sync+0x188/0x190
The zram->comp_algs[ZRAM_PRIMARY_COMP] can be NULL in zram_add() if
comp_algorithm_set() has not been called. User can access the zram device
by sysfs after device_add_disk(), so there is a time window to trigger the
NULL pointer dereference. Move it ahead device_add_disk() to make sure
when user can access the zram device, it is ready. comp_algorithm_set()
is protected by zram->init_lock in other places and no such problem. |
In the Linux kernel, the following vulnerability has been resolved:
net: usb: lan78xx: Fix double free issue with interrupt buffer allocation
In lan78xx_probe(), the buffer `buf` was being freed twice: once
implicitly through `usb_free_urb(dev->urb_intr)` with the
`URB_FREE_BUFFER` flag and again explicitly by `kfree(buf)`. This caused
a double free issue.
To resolve this, reordered `kmalloc()` and `usb_alloc_urb()` calls to
simplify the initialization sequence and removed the redundant
`kfree(buf)`. Now, `buf` is allocated after `usb_alloc_urb()`, ensuring
it is correctly managed by `usb_fill_int_urb()` and freed by
`usb_free_urb()` as intended. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Fix slab-use-after-free Read in set_powered_sync
This fixes the following crash:
==================================================================
BUG: KASAN: slab-use-after-free in set_powered_sync+0x3a/0xc0 net/bluetooth/mgmt.c:1353
Read of size 8 at addr ffff888029b4dd18 by task kworker/u9:0/54
CPU: 1 UID: 0 PID: 54 Comm: kworker/u9:0 Not tainted 6.11.0-rc6-syzkaller-01155-gf723224742fc #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024
Workqueue: hci0 hci_cmd_sync_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:93 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:119
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
q kasan_report+0x143/0x180 mm/kasan/report.c:601
set_powered_sync+0x3a/0xc0 net/bluetooth/mgmt.c:1353
hci_cmd_sync_work+0x22b/0x400 net/bluetooth/hci_sync.c:328
process_one_work kernel/workqueue.c:3231 [inline]
process_scheduled_works+0xa2c/0x1830 kernel/workqueue.c:3312
worker_thread+0x86d/0xd10 kernel/workqueue.c:3389
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 5247:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:370 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387
kasan_kmalloc include/linux/kasan.h:211 [inline]
__kmalloc_cache_noprof+0x19c/0x2c0 mm/slub.c:4193
kmalloc_noprof include/linux/slab.h:681 [inline]
kzalloc_noprof include/linux/slab.h:807 [inline]
mgmt_pending_new+0x65/0x250 net/bluetooth/mgmt_util.c:269
mgmt_pending_add+0x36/0x120 net/bluetooth/mgmt_util.c:296
set_powered+0x3cd/0x5e0 net/bluetooth/mgmt.c:1394
hci_mgmt_cmd+0xc47/0x11d0 net/bluetooth/hci_sock.c:1712
hci_sock_sendmsg+0x7b8/0x11c0 net/bluetooth/hci_sock.c:1832
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
sock_write_iter+0x2dd/0x400 net/socket.c:1160
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0xa72/0xc90 fs/read_write.c:590
ksys_write+0x1a0/0x2c0 fs/read_write.c:643
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 5246:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:579
poison_slab_object+0xe0/0x150 mm/kasan/common.c:240
__kasan_slab_free+0x37/0x60 mm/kasan/common.c:256
kasan_slab_free include/linux/kasan.h:184 [inline]
slab_free_hook mm/slub.c:2256 [inline]
slab_free mm/slub.c:4477 [inline]
kfree+0x149/0x360 mm/slub.c:4598
settings_rsp+0x2bc/0x390 net/bluetooth/mgmt.c:1443
mgmt_pending_foreach+0xd1/0x130 net/bluetooth/mgmt_util.c:259
__mgmt_power_off+0x112/0x420 net/bluetooth/mgmt.c:9455
hci_dev_close_sync+0x665/0x11a0 net/bluetooth/hci_sync.c:5191
hci_dev_do_close net/bluetooth/hci_core.c:483 [inline]
hci_dev_close+0x112/0x210 net/bluetooth/hci_core.c:508
sock_do_ioctl+0x158/0x460 net/socket.c:1222
sock_ioctl+0x629/0x8e0 net/socket.c:1341
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83gv
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
In the Linux kernel, the following vulnerability has been resolved:
PCI: Fix use-after-free of slot->bus on hot remove
Dennis reports a boot crash on recent Lenovo laptops with a USB4 dock.
Since commit 0fc70886569c ("thunderbolt: Reset USB4 v2 host router") and
commit 59a54c5f3dbd ("thunderbolt: Reset topology created by the boot
firmware"), USB4 v2 and v1 Host Routers are reset on probe of the
thunderbolt driver.
The reset clears the Presence Detect State and Data Link Layer Link Active
bits at the USB4 Host Router's Root Port and thus causes hot removal of the
dock.
The crash occurs when pciehp is unbound from one of the dock's Downstream
Ports: pciehp creates a pci_slot on bind and destroys it on unbind. The
pci_slot contains a pointer to the pci_bus below the Downstream Port, but
a reference on that pci_bus is never acquired. The pci_bus is destroyed
before the pci_slot, so a use-after-free ensues when pci_slot_release()
accesses slot->bus.
In principle this should not happen because pci_stop_bus_device() unbinds
pciehp (and therefore destroys the pci_slot) before the pci_bus is
destroyed by pci_remove_bus_device().
However the stacktrace provided by Dennis shows that pciehp is unbound from
pci_remove_bus_device() instead of pci_stop_bus_device(). To understand
the significance of this, one needs to know that the PCI core uses a two
step process to remove a portion of the hierarchy: It first unbinds all
drivers in the sub-hierarchy in pci_stop_bus_device() and then actually
removes the devices in pci_remove_bus_device(). There is no precaution to
prevent driver binding in-between pci_stop_bus_device() and
pci_remove_bus_device().
In Dennis' case, it seems removal of the hierarchy by pciehp races with
driver binding by pci_bus_add_devices(). pciehp is bound to the
Downstream Port after pci_stop_bus_device() has run, so it is unbound by
pci_remove_bus_device() instead of pci_stop_bus_device(). Because the
pci_bus has already been destroyed at that point, accesses to it result in
a use-after-free.
One might conclude that driver binding needs to be prevented after
pci_stop_bus_device() has run. However it seems risky that pci_slot points
to pci_bus without holding a reference. Solely relying on correct ordering
of driver unbind versus pci_bus destruction is certainly not defensive
programming.
If pci_slot has a need to access data in pci_bus, it ought to acquire a
reference. Amend pci_create_slot() accordingly. Dennis reports that the
crash is not reproducible with this change.
Abridged stacktrace:
pcieport 0000:00:07.0: PME: Signaling with IRQ 156
pcieport 0000:00:07.0: pciehp: Slot #12 AttnBtn- PwrCtrl- MRL- AttnInd- PwrInd- HotPlug+ Surprise+ Interlock- NoCompl+ IbPresDis- LLActRep+
pci_bus 0000:20: dev 00, created physical slot 12
pcieport 0000:00:07.0: pciehp: Slot(12): Card not present
...
pcieport 0000:21:02.0: pciehp: pcie_disable_notification: SLOTCTRL d8 write cmd 0
Oops: general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP NOPTI
CPU: 13 UID: 0 PID: 134 Comm: irq/156-pciehp Not tainted 6.11.0-devel+ #1
RIP: 0010:dev_driver_string+0x12/0x40
pci_destroy_slot
pciehp_remove
pcie_port_remove_service
device_release_driver_internal
bus_remove_device
device_del
device_unregister
remove_iter
device_for_each_child
pcie_portdrv_remove
pci_device_remove
device_release_driver_internal
bus_remove_device
device_del
pci_remove_bus_device (recursive invocation)
pci_remove_bus_device
pciehp_unconfigure_device
pciehp_disable_slot
pciehp_handle_presence_or_link_change
pciehp_ist |
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: make sure cache entry active before cache_show
The function `c_show` was called with protection from RCU. This only
ensures that `cp` will not be freed. Therefore, the reference count for
`cp` can drop to zero, which will trigger a refcount use-after-free
warning when `cache_get` is called. To resolve this issue, use
`cache_get_rcu` to ensure that `cp` remains active.
------------[ cut here ]------------
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 7 PID: 822 at lib/refcount.c:25
refcount_warn_saturate+0xb1/0x120
CPU: 7 UID: 0 PID: 822 Comm: cat Not tainted 6.12.0-rc3+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.1-2.fc37 04/01/2014
RIP: 0010:refcount_warn_saturate+0xb1/0x120
Call Trace:
<TASK>
c_show+0x2fc/0x380 [sunrpc]
seq_read_iter+0x589/0x770
seq_read+0x1e5/0x270
proc_reg_read+0xe1/0x140
vfs_read+0x125/0x530
ksys_read+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
In the Linux kernel, the following vulnerability has been resolved:
NFSv4.0: Fix a use-after-free problem in the asynchronous open()
Yang Erkun reports that when two threads are opening files at the same
time, and are forced to abort before a reply is seen, then the call to
nfs_release_seqid() in nfs4_opendata_free() can result in a
use-after-free of the pointer to the defunct rpc task of the other
thread.
The fix is to ensure that if the RPC call is aborted before the call to
nfs_wait_on_sequence() is complete, then we must call nfs_release_seqid()
in nfs4_open_release() before the rpc_task is freed. |
In the Linux kernel, the following vulnerability has been resolved:
block, bfq: fix bfqq uaf in bfq_limit_depth()
Set new allocated bfqq to bic or remove freed bfqq from bic are both
protected by bfqd->lock, however bfq_limit_depth() is deferencing bfqq
from bic without the lock, this can lead to UAF if the io_context is
shared by multiple tasks.
For example, test bfq with io_uring can trigger following UAF in v6.6:
==================================================================
BUG: KASAN: slab-use-after-free in bfqq_group+0x15/0x50
Call Trace:
<TASK>
dump_stack_lvl+0x47/0x80
print_address_description.constprop.0+0x66/0x300
print_report+0x3e/0x70
kasan_report+0xb4/0xf0
bfqq_group+0x15/0x50
bfqq_request_over_limit+0x130/0x9a0
bfq_limit_depth+0x1b5/0x480
__blk_mq_alloc_requests+0x2b5/0xa00
blk_mq_get_new_requests+0x11d/0x1d0
blk_mq_submit_bio+0x286/0xb00
submit_bio_noacct_nocheck+0x331/0x400
__block_write_full_folio+0x3d0/0x640
writepage_cb+0x3b/0xc0
write_cache_pages+0x254/0x6c0
write_cache_pages+0x254/0x6c0
do_writepages+0x192/0x310
filemap_fdatawrite_wbc+0x95/0xc0
__filemap_fdatawrite_range+0x99/0xd0
filemap_write_and_wait_range.part.0+0x4d/0xa0
blkdev_read_iter+0xef/0x1e0
io_read+0x1b6/0x8a0
io_issue_sqe+0x87/0x300
io_wq_submit_work+0xeb/0x390
io_worker_handle_work+0x24d/0x550
io_wq_worker+0x27f/0x6c0
ret_from_fork_asm+0x1b/0x30
</TASK>
Allocated by task 808602:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_slab_alloc+0x83/0x90
kmem_cache_alloc_node+0x1b1/0x6d0
bfq_get_queue+0x138/0xfa0
bfq_get_bfqq_handle_split+0xe3/0x2c0
bfq_init_rq+0x196/0xbb0
bfq_insert_request.isra.0+0xb5/0x480
bfq_insert_requests+0x156/0x180
blk_mq_insert_request+0x15d/0x440
blk_mq_submit_bio+0x8a4/0xb00
submit_bio_noacct_nocheck+0x331/0x400
__blkdev_direct_IO_async+0x2dd/0x330
blkdev_write_iter+0x39a/0x450
io_write+0x22a/0x840
io_issue_sqe+0x87/0x300
io_wq_submit_work+0xeb/0x390
io_worker_handle_work+0x24d/0x550
io_wq_worker+0x27f/0x6c0
ret_from_fork+0x2d/0x50
ret_from_fork_asm+0x1b/0x30
Freed by task 808589:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x27/0x40
__kasan_slab_free+0x126/0x1b0
kmem_cache_free+0x10c/0x750
bfq_put_queue+0x2dd/0x770
__bfq_insert_request.isra.0+0x155/0x7a0
bfq_insert_request.isra.0+0x122/0x480
bfq_insert_requests+0x156/0x180
blk_mq_dispatch_plug_list+0x528/0x7e0
blk_mq_flush_plug_list.part.0+0xe5/0x590
__blk_flush_plug+0x3b/0x90
blk_finish_plug+0x40/0x60
do_writepages+0x19d/0x310
filemap_fdatawrite_wbc+0x95/0xc0
__filemap_fdatawrite_range+0x99/0xd0
filemap_write_and_wait_range.part.0+0x4d/0xa0
blkdev_read_iter+0xef/0x1e0
io_read+0x1b6/0x8a0
io_issue_sqe+0x87/0x300
io_wq_submit_work+0xeb/0x390
io_worker_handle_work+0x24d/0x550
io_wq_worker+0x27f/0x6c0
ret_from_fork+0x2d/0x50
ret_from_fork_asm+0x1b/0x30
Fix the problem by protecting bic_to_bfqq() with bfqd->lock. |