| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ax25: rcu protect dev->ax25_ptr
syzbot found a lockdep issue [1].
We should remove ax25 RTNL dependency in ax25_setsockopt()
This should also fix a variety of possible UAF in ax25.
[1]
WARNING: possible circular locking dependency detected
6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0 Not tainted
------------------------------------------------------
syz.5.1818/12806 is trying to acquire lock:
ffffffff8fcb3988 (rtnl_mutex){+.+.}-{4:4}, at: ax25_setsockopt+0xa55/0xe90 net/ax25/af_ax25.c:680
but task is already holding lock:
ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1618 [inline]
ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: ax25_setsockopt+0x209/0xe90 net/ax25/af_ax25.c:574
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (sk_lock-AF_AX25){+.+.}-{0:0}:
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849
lock_sock_nested+0x48/0x100 net/core/sock.c:3642
lock_sock include/net/sock.h:1618 [inline]
ax25_kill_by_device net/ax25/af_ax25.c:101 [inline]
ax25_device_event+0x24d/0x580 net/ax25/af_ax25.c:146
notifier_call_chain+0x1a5/0x3f0 kernel/notifier.c:85
__dev_notify_flags+0x207/0x400
dev_change_flags+0xf0/0x1a0 net/core/dev.c:9026
dev_ifsioc+0x7c8/0xe70 net/core/dev_ioctl.c:563
dev_ioctl+0x719/0x1340 net/core/dev_ioctl.c:820
sock_do_ioctl+0x240/0x460 net/socket.c:1234
sock_ioctl+0x626/0x8e0 net/socket.c:1339
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:906 [inline]
__se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #0 (rtnl_mutex){+.+.}-{4:4}:
check_prev_add kernel/locking/lockdep.c:3161 [inline]
check_prevs_add kernel/locking/lockdep.c:3280 [inline]
validate_chain+0x18ef/0x5920 kernel/locking/lockdep.c:3904
__lock_acquire+0x1397/0x2100 kernel/locking/lockdep.c:5226
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0x1ac/0xee0 kernel/locking/mutex.c:735
ax25_setsockopt+0xa55/0xe90 net/ax25/af_ax25.c:680
do_sock_setsockopt+0x3af/0x720 net/socket.c:2324
__sys_setsockopt net/socket.c:2349 [inline]
__do_sys_setsockopt net/socket.c:2355 [inline]
__se_sys_setsockopt net/socket.c:2352 [inline]
__x64_sys_setsockopt+0x1ee/0x280 net/socket.c:2352
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(sk_lock-AF_AX25);
lock(rtnl_mutex);
lock(sk_lock-AF_AX25);
lock(rtnl_mutex);
*** DEADLOCK ***
1 lock held by syz.5.1818/12806:
#0: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1618 [inline]
#0: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: ax25_setsockopt+0x209/0xe90 net/ax25/af_ax25.c:574
stack backtrace:
CPU: 1 UID: 0 PID: 12806 Comm: syz.5.1818 Not tainted 6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_circular_bug+0x13a/0x1b0 kernel/locking/lockdep.c:2074
check_noncircular+0x36a/0x4a0 kernel/locking/lockdep.c:2206
check_prev_add kernel/locking/lockdep.c:3161 [inline]
check_prevs_add kernel/lockin
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: protect access to buffers with no active references
nilfs_lookup_dirty_data_buffers(), which iterates through the buffers
attached to dirty data folios/pages, accesses the attached buffers without
locking the folios/pages.
For data cache, nilfs_clear_folio_dirty() may be called asynchronously
when the file system degenerates to read only, so
nilfs_lookup_dirty_data_buffers() still has the potential to cause use
after free issues when buffers lose the protection of their dirty state
midway due to this asynchronous clearing and are unintentionally freed by
try_to_free_buffers().
Eliminate this race issue by adjusting the lock section in this function. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix oops when unload drivers paralleling
When unload hclge driver, it tries to disable sriov first for each
ae_dev node from hnae3_ae_dev_list. If user unloads hns3 driver at
the time, because it removes all the ae_dev nodes, and it may cause
oops.
But we can't simply use hnae3_common_lock for this. Because in the
process flow of pci_disable_sriov(), it will trigger the remove flow
of VF, which will also take hnae3_common_lock.
To fixes it, introduce a new mutex to protect the unload process. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: clear acl_access/acl_default after releasing them
If getting acl_default fails, acl_access and acl_default will be released
simultaneously. However, acl_access will still retain a pointer pointing
to the released posix_acl, which will trigger a WARNING in
nfs3svc_release_getacl like this:
------------[ cut here ]------------
refcount_t: underflow; use-after-free.
WARNING: CPU: 26 PID: 3199 at lib/refcount.c:28
refcount_warn_saturate+0xb5/0x170
Modules linked in:
CPU: 26 UID: 0 PID: 3199 Comm: nfsd Not tainted
6.12.0-rc6-00079-g04ae226af01f-dirty #8
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.1-2.fc37 04/01/2014
RIP: 0010:refcount_warn_saturate+0xb5/0x170
Code: cc cc 0f b6 1d b3 20 a5 03 80 fb 01 0f 87 65 48 d8 00 83 e3 01 75
e4 48 c7 c7 c0 3b 9b 85 c6 05 97 20 a5 03 01 e8 fb 3e 30 ff <0f> 0b eb
cd 0f b6 1d 8a3
RSP: 0018:ffffc90008637cd8 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff83904fde
RDX: dffffc0000000000 RSI: 0000000000000008 RDI: ffff88871ed36380
RBP: ffff888158beeb40 R08: 0000000000000001 R09: fffff520010c6f56
R10: ffffc90008637ab7 R11: 0000000000000001 R12: 0000000000000001
R13: ffff888140e77400 R14: ffff888140e77408 R15: ffffffff858b42c0
FS: 0000000000000000(0000) GS:ffff88871ed00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000562384d32158 CR3: 000000055cc6a000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? refcount_warn_saturate+0xb5/0x170
? __warn+0xa5/0x140
? refcount_warn_saturate+0xb5/0x170
? report_bug+0x1b1/0x1e0
? handle_bug+0x53/0xa0
? exc_invalid_op+0x17/0x40
? asm_exc_invalid_op+0x1a/0x20
? tick_nohz_tick_stopped+0x1e/0x40
? refcount_warn_saturate+0xb5/0x170
? refcount_warn_saturate+0xb5/0x170
nfs3svc_release_getacl+0xc9/0xe0
svc_process_common+0x5db/0xb60
? __pfx_svc_process_common+0x10/0x10
? __rcu_read_unlock+0x69/0xa0
? __pfx_nfsd_dispatch+0x10/0x10
? svc_xprt_received+0xa1/0x120
? xdr_init_decode+0x11d/0x190
svc_process+0x2a7/0x330
svc_handle_xprt+0x69d/0x940
svc_recv+0x180/0x2d0
nfsd+0x168/0x200
? __pfx_nfsd+0x10/0x10
kthread+0x1a2/0x1e0
? kthread+0xf4/0x1e0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x34/0x60
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Kernel panic - not syncing: kernel: panic_on_warn set ...
Clear acl_access/acl_default after posix_acl_release is called to prevent
UAF from being triggered. |
| In the Linux kernel, the following vulnerability has been resolved:
vrf: use RCU protection in l3mdev_l3_out()
l3mdev_l3_out() can be called without RCU being held:
raw_sendmsg()
ip_push_pending_frames()
ip_send_skb()
ip_local_out()
__ip_local_out()
l3mdev_ip_out()
Add rcu_read_lock() / rcu_read_unlock() pair to avoid
a potential UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
zram: fix potential UAF of zram table
If zram_meta_alloc failed early, it frees allocated zram->table without
setting it NULL. Which will potentially cause zram_meta_free to access
the table if user reset an failed and uninitialized device. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/eventfd: ensure io_eventfd_signal() defers another RCU period
io_eventfd_do_signal() is invoked from an RCU callback, but when
dropping the reference to the io_ev_fd, it calls io_eventfd_free()
directly if the refcount drops to zero. This isn't correct, as any
potential freeing of the io_ev_fd should be deferred another RCU grace
period.
Just call io_eventfd_put() rather than open-code the dec-and-test and
free, which will correctly defer it another RCU grace period. |
| In the Linux kernel, the following vulnerability has been resolved:
block, bfq: fix waker_bfqq UAF after bfq_split_bfqq()
Our syzkaller report a following UAF for v6.6:
BUG: KASAN: slab-use-after-free in bfq_init_rq+0x175d/0x17a0 block/bfq-iosched.c:6958
Read of size 8 at addr ffff8881b57147d8 by task fsstress/232726
CPU: 2 PID: 232726 Comm: fsstress Not tainted 6.6.0-g3629d1885222 #39
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x91/0xf0 lib/dump_stack.c:106
print_address_description.constprop.0+0x66/0x300 mm/kasan/report.c:364
print_report+0x3e/0x70 mm/kasan/report.c:475
kasan_report+0xb8/0xf0 mm/kasan/report.c:588
hlist_add_head include/linux/list.h:1023 [inline]
bfq_init_rq+0x175d/0x17a0 block/bfq-iosched.c:6958
bfq_insert_request.isra.0+0xe8/0xa20 block/bfq-iosched.c:6271
bfq_insert_requests+0x27f/0x390 block/bfq-iosched.c:6323
blk_mq_insert_request+0x290/0x8f0 block/blk-mq.c:2660
blk_mq_submit_bio+0x1021/0x15e0 block/blk-mq.c:3143
__submit_bio+0xa0/0x6b0 block/blk-core.c:639
__submit_bio_noacct_mq block/blk-core.c:718 [inline]
submit_bio_noacct_nocheck+0x5b7/0x810 block/blk-core.c:747
submit_bio_noacct+0xca0/0x1990 block/blk-core.c:847
__ext4_read_bh fs/ext4/super.c:205 [inline]
ext4_read_bh+0x15e/0x2e0 fs/ext4/super.c:230
__read_extent_tree_block+0x304/0x6f0 fs/ext4/extents.c:567
ext4_find_extent+0x479/0xd20 fs/ext4/extents.c:947
ext4_ext_map_blocks+0x1a3/0x2680 fs/ext4/extents.c:4182
ext4_map_blocks+0x929/0x15a0 fs/ext4/inode.c:660
ext4_iomap_begin_report+0x298/0x480 fs/ext4/inode.c:3569
iomap_iter+0x3dd/0x1010 fs/iomap/iter.c:91
iomap_fiemap+0x1f4/0x360 fs/iomap/fiemap.c:80
ext4_fiemap+0x181/0x210 fs/ext4/extents.c:5051
ioctl_fiemap.isra.0+0x1b4/0x290 fs/ioctl.c:220
do_vfs_ioctl+0x31c/0x11a0 fs/ioctl.c:811
__do_sys_ioctl fs/ioctl.c:869 [inline]
__se_sys_ioctl+0xae/0x190 fs/ioctl.c:857
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x70/0x120 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x78/0xe2
Allocated by task 232719:
kasan_save_stack+0x22/0x50 mm/kasan/common.c:45
kasan_set_track+0x25/0x30 mm/kasan/common.c:52
__kasan_slab_alloc+0x87/0x90 mm/kasan/common.c:328
kasan_slab_alloc include/linux/kasan.h:188 [inline]
slab_post_alloc_hook mm/slab.h:768 [inline]
slab_alloc_node mm/slub.c:3492 [inline]
kmem_cache_alloc_node+0x1b8/0x6f0 mm/slub.c:3537
bfq_get_queue+0x215/0x1f00 block/bfq-iosched.c:5869
bfq_get_bfqq_handle_split+0x167/0x5f0 block/bfq-iosched.c:6776
bfq_init_rq+0x13a4/0x17a0 block/bfq-iosched.c:6938
bfq_insert_request.isra.0+0xe8/0xa20 block/bfq-iosched.c:6271
bfq_insert_requests+0x27f/0x390 block/bfq-iosched.c:6323
blk_mq_insert_request+0x290/0x8f0 block/blk-mq.c:2660
blk_mq_submit_bio+0x1021/0x15e0 block/blk-mq.c:3143
__submit_bio+0xa0/0x6b0 block/blk-core.c:639
__submit_bio_noacct_mq block/blk-core.c:718 [inline]
submit_bio_noacct_nocheck+0x5b7/0x810 block/blk-core.c:747
submit_bio_noacct+0xca0/0x1990 block/blk-core.c:847
__ext4_read_bh fs/ext4/super.c:205 [inline]
ext4_read_bh_nowait+0x15a/0x240 fs/ext4/super.c:217
ext4_read_bh_lock+0xac/0xd0 fs/ext4/super.c:242
ext4_bread_batch+0x268/0x500 fs/ext4/inode.c:958
__ext4_find_entry+0x448/0x10f0 fs/ext4/namei.c:1671
ext4_lookup_entry fs/ext4/namei.c:1774 [inline]
ext4_lookup.part.0+0x359/0x6f0 fs/ext4/namei.c:1842
ext4_lookup+0x72/0x90 fs/ext4/namei.c:1839
__lookup_slow+0x257/0x480 fs/namei.c:1696
lookup_slow fs/namei.c:1713 [inline]
walk_component+0x454/0x5c0 fs/namei.c:2004
link_path_walk.part.0+0x773/0xda0 fs/namei.c:2331
link_path_walk fs/namei.c:3826 [inline]
path_openat+0x1b9/0x520 fs/namei.c:3826
do_filp_open+0x1b7/0x400 fs/namei.c:3857
do_sys_openat2+0x5dc/0x6e0 fs/open.c:1428
do_sys_open fs/open.c:1443 [inline]
__do_sys_openat fs/open.c:1459 [inline]
__se_sys_openat fs/open.c:1454 [inline]
__x64_sys_openat+0x148/0x200 fs/open.c:1454
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_6
---truncated--- |
| It was possible to cause a use-after-free in the content process side of a WebTransport connection, leading to a potentially exploitable crash. This vulnerability affects Firefox < 136, Firefox ESR < 115.21, Firefox ESR < 128.8, Thunderbird < 136, and Thunderbird < 128.8. |
| A race during concurrent delazification could have led to a use-after-free. This vulnerability affects Firefox < 135, Firefox ESR < 115.20, Firefox ESR < 128.7, Thunderbird < 128.7, and Thunderbird < 135. |
| An attacker could have caused a use-after-free via the Custom Highlight API, leading to a potentially exploitable crash. This vulnerability affects Firefox < 135, Firefox ESR < 115.20, Firefox ESR < 128.7, Thunderbird < 128.7, and Thunderbird < 135. |
| An attacker could have caused a use-after-free via crafted XSLT data, leading to a potentially exploitable crash. This vulnerability affects Firefox < 135, Firefox ESR < 115.20, Firefox ESR < 128.7, Thunderbird < 128.7, and Thunderbird < 135. |
| In the Linux kernel, the following vulnerability has been resolved:
hrtimers: Handle CPU state correctly on hotplug
Consider a scenario where a CPU transitions from CPUHP_ONLINE to halfway
through a CPU hotunplug down to CPUHP_HRTIMERS_PREPARE, and then back to
CPUHP_ONLINE:
Since hrtimers_prepare_cpu() does not run, cpu_base.hres_active remains set
to 1 throughout. However, during a CPU unplug operation, the tick and the
clockevents are shut down at CPUHP_AP_TICK_DYING. On return to the online
state, for instance CFS incorrectly assumes that the hrtick is already
active, and the chance of the clockevent device to transition to oneshot
mode is also lost forever for the CPU, unless it goes back to a lower state
than CPUHP_HRTIMERS_PREPARE once.
This round-trip reveals another issue; cpu_base.online is not set to 1
after the transition, which appears as a WARN_ON_ONCE in enqueue_hrtimer().
Aside of that, the bulk of the per CPU state is not reset either, which
means there are dangling pointers in the worst case.
Address this by adding a corresponding startup() callback, which resets the
stale per CPU state and sets the online flag.
[ tglx: Make the new callback unconditionally available, remove the online
modification in the prepare() callback and clear the remaining
state in the starting callback instead of the prepare callback ] |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: Fix sleeping in invalid context in die()
die() can be called in exception handler, and therefore cannot sleep.
However, die() takes spinlock_t which can sleep with PREEMPT_RT enabled.
That causes the following warning:
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 285, name: mutex
preempt_count: 110001, expected: 0
RCU nest depth: 0, expected: 0
CPU: 0 UID: 0 PID: 285 Comm: mutex Not tainted 6.12.0-rc7-00022-ge19049cf7d56-dirty #234
Hardware name: riscv-virtio,qemu (DT)
Call Trace:
dump_backtrace+0x1c/0x24
show_stack+0x2c/0x38
dump_stack_lvl+0x5a/0x72
dump_stack+0x14/0x1c
__might_resched+0x130/0x13a
rt_spin_lock+0x2a/0x5c
die+0x24/0x112
do_trap_insn_illegal+0xa0/0xea
_new_vmalloc_restore_context_a0+0xcc/0xd8
Oops - illegal instruction [#1]
Switch to use raw_spinlock_t, which does not sleep even with PREEMPT_RT
enabled. |
| In the Linux kernel, the following vulnerability has been resolved:
ila: serialize calls to nf_register_net_hooks()
syzbot found a race in ila_add_mapping() [1]
commit 031ae72825ce ("ila: call nf_unregister_net_hooks() sooner")
attempted to fix a similar issue.
Looking at the syzbot repro, we have concurrent ILA_CMD_ADD commands.
Add a mutex to make sure at most one thread is calling nf_register_net_hooks().
[1]
BUG: KASAN: slab-use-after-free in rht_key_hashfn include/linux/rhashtable.h:159 [inline]
BUG: KASAN: slab-use-after-free in __rhashtable_lookup.constprop.0+0x426/0x550 include/linux/rhashtable.h:604
Read of size 4 at addr ffff888028f40008 by task dhcpcd/5501
CPU: 1 UID: 0 PID: 5501 Comm: dhcpcd Not tainted 6.13.0-rc4-syzkaller-00054-gd6ef8b40d075 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xc3/0x620 mm/kasan/report.c:489
kasan_report+0xd9/0x110 mm/kasan/report.c:602
rht_key_hashfn include/linux/rhashtable.h:159 [inline]
__rhashtable_lookup.constprop.0+0x426/0x550 include/linux/rhashtable.h:604
rhashtable_lookup include/linux/rhashtable.h:646 [inline]
rhashtable_lookup_fast include/linux/rhashtable.h:672 [inline]
ila_lookup_wildcards net/ipv6/ila/ila_xlat.c:127 [inline]
ila_xlat_addr net/ipv6/ila/ila_xlat.c:652 [inline]
ila_nf_input+0x1ee/0x620 net/ipv6/ila/ila_xlat.c:185
nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline]
nf_hook_slow+0xbb/0x200 net/netfilter/core.c:626
nf_hook.constprop.0+0x42e/0x750 include/linux/netfilter.h:269
NF_HOOK include/linux/netfilter.h:312 [inline]
ipv6_rcv+0xa4/0x680 net/ipv6/ip6_input.c:309
__netif_receive_skb_one_core+0x12e/0x1e0 net/core/dev.c:5672
__netif_receive_skb+0x1d/0x160 net/core/dev.c:5785
process_backlog+0x443/0x15f0 net/core/dev.c:6117
__napi_poll.constprop.0+0xb7/0x550 net/core/dev.c:6883
napi_poll net/core/dev.c:6952 [inline]
net_rx_action+0xa94/0x1010 net/core/dev.c:7074
handle_softirqs+0x213/0x8f0 kernel/softirq.c:561
__do_softirq kernel/softirq.c:595 [inline]
invoke_softirq kernel/softirq.c:435 [inline]
__irq_exit_rcu+0x109/0x170 kernel/softirq.c:662
irq_exit_rcu+0x9/0x30 kernel/softirq.c:678
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline]
sysvec_apic_timer_interrupt+0xa4/0xc0 arch/x86/kernel/apic/apic.c:1049 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: flush delalloc workers queue before stopping cleaner kthread during unmount
During the unmount path, at close_ctree(), we first stop the cleaner
kthread, using kthread_stop() which frees the associated task_struct, and
then stop and destroy all the work queues. However after we stopped the
cleaner we may still have a worker from the delalloc_workers queue running
inode.c:submit_compressed_extents(), which calls btrfs_add_delayed_iput(),
which in turn tries to wake up the cleaner kthread - which was already
destroyed before, resulting in a use-after-free on the task_struct.
Syzbot reported this with the following stack traces:
BUG: KASAN: slab-use-after-free in __lock_acquire+0x78/0x2100 kernel/locking/lockdep.c:5089
Read of size 8 at addr ffff8880259d2818 by task kworker/u8:3/52
CPU: 1 UID: 0 PID: 52 Comm: kworker/u8:3 Not tainted 6.13.0-rc1-syzkaller-00002-gcdd30ebb1b9f #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: btrfs-delalloc btrfs_work_helper
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
__lock_acquire+0x78/0x2100 kernel/locking/lockdep.c:5089
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0xd5/0x120 kernel/locking/spinlock.c:162
class_raw_spinlock_irqsave_constructor include/linux/spinlock.h:551 [inline]
try_to_wake_up+0xc2/0x1470 kernel/sched/core.c:4205
submit_compressed_extents+0xdf/0x16e0 fs/btrfs/inode.c:1615
run_ordered_work fs/btrfs/async-thread.c:288 [inline]
btrfs_work_helper+0x96f/0xc40 fs/btrfs/async-thread.c:324
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 2:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
unpoison_slab_object mm/kasan/common.c:319 [inline]
__kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:345
kasan_slab_alloc include/linux/kasan.h:250 [inline]
slab_post_alloc_hook mm/slub.c:4104 [inline]
slab_alloc_node mm/slub.c:4153 [inline]
kmem_cache_alloc_node_noprof+0x1d9/0x380 mm/slub.c:4205
alloc_task_struct_node kernel/fork.c:180 [inline]
dup_task_struct+0x57/0x8c0 kernel/fork.c:1113
copy_process+0x5d1/0x3d50 kernel/fork.c:2225
kernel_clone+0x223/0x870 kernel/fork.c:2807
kernel_thread+0x1bc/0x240 kernel/fork.c:2869
create_kthread kernel/kthread.c:412 [inline]
kthreadd+0x60d/0x810 kernel/kthread.c:767
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
Freed by task 24:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2338 [inline]
slab_free mm/slub.c:4598 [inline]
kmem_cache_free+0x195/0x410 mm/slub.c:4700
put_task_struct include/linux/sched/task.h:144 [inline]
delayed_put_task_struct+0x125/0x300 kernel/exit.c:227
rcu_do_batch kernel/rcu/tree.c:2567 [inline]
rcu_core+0xaaa/0x17a0 kernel/rcu/tree.c:2823
handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:554
run_ksoftirqd+0xca/0x130 kernel/softirq.c:943
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix slab-use-after-free due to dangling pointer dqi_priv
When mounting ocfs2 and then remounting it as read-only, a
slab-use-after-free occurs after the user uses a syscall to
quota_getnextquota. Specifically, sb_dqinfo(sb, type)->dqi_priv is the
dangling pointer.
During the remounting process, the pointer dqi_priv is freed but is never
set as null leaving it to be accessed. Additionally, the read-only option
for remounting sets the DQUOT_SUSPENDED flag instead of setting the
DQUOT_USAGE_ENABLED flags. Moreover, later in the process of getting the
next quota, the function ocfs2_get_next_id is called and only checks the
quota usage flags and not the quota suspended flags.
To fix this, I set dqi_priv to null when it is freed after remounting with
read-only and put a check for DQUOT_SUSPENDED in ocfs2_get_next_id.
[akpm@linux-foundation.org: coding-style cleanups] |
| In the Linux kernel, the following vulnerability has been resolved:
drm: adv7511: Fix use-after-free in adv7533_attach_dsi()
The host_node pointer was assigned and freed in adv7533_parse_dt(), and
later, adv7533_attach_dsi() uses the same. Fix this use-after-free issue
by dropping of_node_put() in adv7533_parse_dt() and calling of_node_put()
in error path of probe() and also in the remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
s390/cpum_sf: Handle CPU hotplug remove during sampling
CPU hotplug remove handling triggers the following function
call sequence:
CPUHP_AP_PERF_S390_SF_ONLINE --> s390_pmu_sf_offline_cpu()
...
CPUHP_AP_PERF_ONLINE --> perf_event_exit_cpu()
The s390 CPUMF sampling CPU hotplug handler invokes:
s390_pmu_sf_offline_cpu()
+--> cpusf_pmu_setup()
+--> setup_pmc_cpu()
+--> deallocate_buffers()
This function de-allocates all sampling data buffers (SDBs) allocated
for that CPU at event initialization. It also clears the
PMU_F_RESERVED bit. The CPU is gone and can not be sampled.
With the event still being active on the removed CPU, the CPU event
hotplug support in kernel performance subsystem triggers the
following function calls on the removed CPU:
perf_event_exit_cpu()
+--> perf_event_exit_cpu_context()
+--> __perf_event_exit_context()
+--> __perf_remove_from_context()
+--> event_sched_out()
+--> cpumsf_pmu_del()
+--> cpumsf_pmu_stop()
+--> hw_perf_event_update()
to stop and remove the event. During removal of the event, the
sampling device driver tries to read out the remaining samples from
the sample data buffers (SDBs). But they have already been freed
(and may have been re-assigned). This may lead to a use after free
situation in which case the samples are most likely invalid. In the
best case the memory has not been reassigned and still contains
valid data.
Remedy this situation and check if the CPU is still in reserved
state (bit PMU_F_RESERVED set). In this case the SDBs have not been
released an contain valid data. This is always the case when
the event is removed (and no CPU hotplug off occured).
If the PMU_F_RESERVED bit is not set, the SDB buffers are gone. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/dp_mst: Ensure mst_primary pointer is valid in drm_dp_mst_handle_up_req()
While receiving an MST up request message from one thread in
drm_dp_mst_handle_up_req(), the MST topology could be removed from
another thread via drm_dp_mst_topology_mgr_set_mst(false), freeing
mst_primary and setting drm_dp_mst_topology_mgr::mst_primary to NULL.
This could lead to a NULL deref/use-after-free of mst_primary in
drm_dp_mst_handle_up_req().
Avoid the above by holding a reference for mst_primary in
drm_dp_mst_handle_up_req() while it's used.
v2: Fix kfreeing the request if getting an mst_primary reference fails. |