| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: imx-card: Add NULL check in imx_card_probe()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
imx_card_probe() does not check for this case, which results in a NULL
pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
netlabel: Fix NULL pointer exception caused by CALIPSO on IPv4 sockets
When calling netlbl_conn_setattr(), addr->sa_family is used
to determine the function behavior. If sk is an IPv4 socket,
but the connect function is called with an IPv6 address,
the function calipso_sock_setattr() is triggered.
Inside this function, the following code is executed:
sk_fullsock(__sk) ? inet_sk(__sk)->pinet6 : NULL;
Since sk is an IPv4 socket, pinet6 is NULL, leading to a
null pointer dereference.
This patch fixes the issue by checking if inet6_sk(sk)
returns a NULL pointer before accessing pinet6. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: add mutual exclusion in proc_sctp_do_udp_port()
We must serialize calls to sctp_udp_sock_stop() and sctp_udp_sock_start()
or risk a crash as syzbot reported:
Oops: general protection fault, probably for non-canonical address 0xdffffc000000000d: 0000 [#1] SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000068-0x000000000000006f]
CPU: 1 UID: 0 PID: 6551 Comm: syz.1.44 Not tainted 6.14.0-syzkaller-g7f2ff7b62617 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025
RIP: 0010:kernel_sock_shutdown+0x47/0x70 net/socket.c:3653
Call Trace:
<TASK>
udp_tunnel_sock_release+0x68/0x80 net/ipv4/udp_tunnel_core.c:181
sctp_udp_sock_stop+0x71/0x160 net/sctp/protocol.c:930
proc_sctp_do_udp_port+0x264/0x450 net/sctp/sysctl.c:553
proc_sys_call_handler+0x3d0/0x5b0 fs/proc/proc_sysctl.c:601
iter_file_splice_write+0x91c/0x1150 fs/splice.c:738
do_splice_from fs/splice.c:935 [inline]
direct_splice_actor+0x18f/0x6c0 fs/splice.c:1158
splice_direct_to_actor+0x342/0xa30 fs/splice.c:1102
do_splice_direct_actor fs/splice.c:1201 [inline]
do_splice_direct+0x174/0x240 fs/splice.c:1227
do_sendfile+0xafd/0xe50 fs/read_write.c:1368
__do_sys_sendfile64 fs/read_write.c:1429 [inline]
__se_sys_sendfile64 fs/read_write.c:1415 [inline]
__x64_sys_sendfile64+0x1d8/0x220 fs/read_write.c:1415
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] |
| In the Linux kernel, the following vulnerability has been resolved:
arcnet: Add NULL check in com20020pci_probe()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
com20020pci_probe() does not check for this case, which results in a
NULL pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue and ensure
no resources are left allocated. |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet:fix NPE during rx_complete
Missing usbnet_going_away Check in Critical Path.
The usb_submit_urb function lacks a usbnet_going_away
validation, whereas __usbnet_queue_skb includes this check.
This inconsistency creates a race condition where:
A URB request may succeed, but the corresponding SKB data
fails to be queued.
Subsequent processes:
(e.g., rx_complete → defer_bh → __skb_unlink(skb, list))
attempt to access skb->next, triggering a NULL pointer
dereference (Kernel Panic). |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: Don't call NULL in do_compat_alignment_fixup()
do_alignment_t32_to_handler() only fixes up alignment faults for
specific instructions; it returns NULL otherwise (e.g. LDREX). When
that's the case, signal to the caller that it needs to proceed with the
regular alignment fault handling (i.e. SIGBUS). Without this patch, the
kernel panics:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
Mem abort info:
ESR = 0x0000000086000006
EC = 0x21: IABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x06: level 2 translation fault
user pgtable: 4k pages, 48-bit VAs, pgdp=00000800164aa000
[0000000000000000] pgd=0800081fdbd22003, p4d=0800081fdbd22003, pud=08000815d51c6003, pmd=0000000000000000
Internal error: Oops: 0000000086000006 [#1] SMP
Modules linked in: cfg80211 rfkill xt_nat xt_tcpudp xt_conntrack nft_chain_nat xt_MASQUERADE nf_nat nf_conntrack_netlink nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 xfrm_user xfrm_algo xt_addrtype nft_compat br_netfilter veth nvme_fa>
libcrc32c crc32c_generic raid0 multipath linear dm_mod dax raid1 md_mod xhci_pci nvme xhci_hcd nvme_core t10_pi usbcore igb crc64_rocksoft crc64 crc_t10dif crct10dif_generic crct10dif_ce crct10dif_common usb_common i2c_algo_bit i2c>
CPU: 2 PID: 3932954 Comm: WPEWebProcess Not tainted 6.1.0-31-arm64 #1 Debian 6.1.128-1
Hardware name: GIGABYTE MP32-AR1-00/MP32-AR1-00, BIOS F18v (SCP: 1.08.20211002) 12/01/2021
pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : 0x0
lr : do_compat_alignment_fixup+0xd8/0x3dc
sp : ffff80000f973dd0
x29: ffff80000f973dd0 x28: ffff081b42526180 x27: 0000000000000000
x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
x23: 0000000000000004 x22: 0000000000000000 x21: 0000000000000001
x20: 00000000e8551f00 x19: ffff80000f973eb0 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000 x9 : ffffaebc949bc488
x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
x5 : 0000000000400000 x4 : 0000fffffffffffe x3 : 0000000000000000
x2 : ffff80000f973eb0 x1 : 00000000e8551f00 x0 : 0000000000000001
Call trace:
0x0
do_alignment_fault+0x40/0x50
do_mem_abort+0x4c/0xa0
el0_da+0x48/0xf0
el0t_32_sync_handler+0x110/0x140
el0t_32_sync+0x190/0x194
Code: bad PC value
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
media: streamzap: fix race between device disconnection and urb callback
Syzkaller has reported a general protection fault at function
ir_raw_event_store_with_filter(). This crash is caused by a NULL pointer
dereference of dev->raw pointer, even though it is checked for NULL in
the same function, which means there is a race condition. It occurs due
to the incorrect order of actions in the streamzap_disconnect() function:
rc_unregister_device() is called before usb_kill_urb(). The dev->raw
pointer is freed and set to NULL in rc_unregister_device(), and only
after that usb_kill_urb() waits for in-progress requests to finish.
If rc_unregister_device() is called while streamzap_callback() handler is
not finished, this can lead to accessing freed resources. Thus
rc_unregister_device() should be called after usb_kill_urb().
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
atm: Fix NULL pointer dereference
When MPOA_cache_impos_rcvd() receives the msg, it can trigger
Null Pointer Dereference Vulnerability if both entry and
holding_time are NULL. Because there is only for the situation
where entry is NULL and holding_time exists, it can be passed
when both entry and holding_time are NULL. If these are NULL,
the entry will be passd to eg_cache_put() as parameter and
it is referenced by entry->use code in it.
kasan log:
[ 3.316691] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000006:I
[ 3.317568] KASAN: null-ptr-deref in range [0x0000000000000030-0x0000000000000037]
[ 3.318188] CPU: 3 UID: 0 PID: 79 Comm: ex Not tainted 6.14.0-rc2 #102
[ 3.318601] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[ 3.319298] RIP: 0010:eg_cache_remove_entry+0xa5/0x470
[ 3.319677] Code: c1 f7 6e fd 48 c7 c7 00 7e 38 b2 e8 95 64 54 fd 48 c7 c7 40 7e 38 b2 48 89 ee e80
[ 3.321220] RSP: 0018:ffff88800583f8a8 EFLAGS: 00010006
[ 3.321596] RAX: 0000000000000006 RBX: ffff888005989000 RCX: ffffffffaecc2d8e
[ 3.322112] RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000030
[ 3.322643] RBP: 0000000000000000 R08: 0000000000000000 R09: fffffbfff6558b88
[ 3.323181] R10: 0000000000000003 R11: 203a207972746e65 R12: 1ffff11000b07f15
[ 3.323707] R13: dffffc0000000000 R14: ffff888005989000 R15: ffff888005989068
[ 3.324185] FS: 000000001b6313c0(0000) GS:ffff88806d380000(0000) knlGS:0000000000000000
[ 3.325042] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3.325545] CR2: 00000000004b4b40 CR3: 000000000248e000 CR4: 00000000000006f0
[ 3.326430] Call Trace:
[ 3.326725] <TASK>
[ 3.326927] ? die_addr+0x3c/0xa0
[ 3.327330] ? exc_general_protection+0x161/0x2a0
[ 3.327662] ? asm_exc_general_protection+0x26/0x30
[ 3.328214] ? vprintk_emit+0x15e/0x420
[ 3.328543] ? eg_cache_remove_entry+0xa5/0x470
[ 3.328910] ? eg_cache_remove_entry+0x9a/0x470
[ 3.329294] ? __pfx_eg_cache_remove_entry+0x10/0x10
[ 3.329664] ? console_unlock+0x107/0x1d0
[ 3.329946] ? __pfx_console_unlock+0x10/0x10
[ 3.330283] ? do_syscall_64+0xa6/0x1a0
[ 3.330584] ? entry_SYSCALL_64_after_hwframe+0x47/0x7f
[ 3.331090] ? __pfx_prb_read_valid+0x10/0x10
[ 3.331395] ? down_trylock+0x52/0x80
[ 3.331703] ? vprintk_emit+0x15e/0x420
[ 3.331986] ? __pfx_vprintk_emit+0x10/0x10
[ 3.332279] ? down_trylock+0x52/0x80
[ 3.332527] ? _printk+0xbf/0x100
[ 3.332762] ? __pfx__printk+0x10/0x10
[ 3.333007] ? _raw_write_lock_irq+0x81/0xe0
[ 3.333284] ? __pfx__raw_write_lock_irq+0x10/0x10
[ 3.333614] msg_from_mpoad+0x1185/0x2750
[ 3.333893] ? __build_skb_around+0x27b/0x3a0
[ 3.334183] ? __pfx_msg_from_mpoad+0x10/0x10
[ 3.334501] ? __alloc_skb+0x1c0/0x310
[ 3.334809] ? __pfx___alloc_skb+0x10/0x10
[ 3.335283] ? _raw_spin_lock+0xe0/0xe0
[ 3.335632] ? finish_wait+0x8d/0x1e0
[ 3.335975] vcc_sendmsg+0x684/0xba0
[ 3.336250] ? __pfx_vcc_sendmsg+0x10/0x10
[ 3.336587] ? __pfx_autoremove_wake_function+0x10/0x10
[ 3.337056] ? fdget+0x176/0x3e0
[ 3.337348] __sys_sendto+0x4a2/0x510
[ 3.337663] ? __pfx___sys_sendto+0x10/0x10
[ 3.337969] ? ioctl_has_perm.constprop.0.isra.0+0x284/0x400
[ 3.338364] ? sock_ioctl+0x1bb/0x5a0
[ 3.338653] ? __rseq_handle_notify_resume+0x825/0xd20
[ 3.339017] ? __pfx_sock_ioctl+0x10/0x10
[ 3.339316] ? __pfx___rseq_handle_notify_resume+0x10/0x10
[ 3.339727] ? selinux_file_ioctl+0xa4/0x260
[ 3.340166] __x64_sys_sendto+0xe0/0x1c0
[ 3.340526] ? syscall_exit_to_user_mode+0x123/0x140
[ 3.340898] do_syscall_64+0xa6/0x1a0
[ 3.341170] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 3.341533] RIP: 0033:0x44a380
[ 3.341757] Code: 0f 1f 84 00 00 00 00 00 66 90 f3 0f 1e fa 41 89 ca 64 8b 04 25 18 00 00 00 85 c00
[
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mm/migrate: fix shmem xarray update during migration
A shmem folio can be either in page cache or in swap cache, but not at the
same time. Namely, once it is in swap cache, folio->mapping should be
NULL, and the folio is no longer in a shmem mapping.
In __folio_migrate_mapping(), to determine the number of xarray entries to
update, folio_test_swapbacked() is used, but that conflates shmem in page
cache case and shmem in swap cache case. It leads to xarray multi-index
entry corruption, since it turns a sibling entry to a normal entry during
xas_store() (see [1] for a userspace reproduction). Fix it by only using
folio_test_swapcache() to determine whether xarray is storing swap cache
entries or not to choose the right number of xarray entries to update.
[1] https://lore.kernel.org/linux-mm/Z8idPCkaJW1IChjT@casper.infradead.org/
Note:
In __split_huge_page(), folio_test_anon() && folio_test_swapcache() is
used to get swap_cache address space, but that ignores the shmem folio in
swap cache case. It could lead to NULL pointer dereferencing when a
in-swap-cache shmem folio is split at __xa_store(), since
!folio_test_anon() is true and folio->mapping is NULL. But fortunately,
its caller split_huge_page_to_list_to_order() bails out early with EBUSY
when folio->mapping is NULL. So no need to take care of it here. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix error code in chan_alloc_skb_cb()
The chan_alloc_skb_cb() function is supposed to return error pointers on
error. Returning NULL will lead to a NULL dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
sched: address a potential NULL pointer dereference in the GRED scheduler.
If kzalloc in gred_init returns a NULL pointer, the code follows the
error handling path, invoking gred_destroy. This, in turn, calls
gred_offload, where memset could receive a NULL pointer as input,
potentially leading to a kernel crash.
When table->opt is NULL in gred_init(), gred_change_table_def()
is not called yet, so it is not necessary to call ->ndo_setup_tc()
in gred_offload(). |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: handle errors in mlx5_chains_create_table()
In mlx5_chains_create_table(), the return value of mlx5_get_fdb_sub_ns()
and mlx5_get_flow_namespace() must be checked to prevent NULL pointer
dereferences. If either function fails, the function should log error
message with mlx5_core_warn() and return error pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Bridge, fix the crash caused by LAG state check
When removing LAG device from bridge, NETDEV_CHANGEUPPER event is
triggered. Driver finds the lower devices (PFs) to flush all the
offloaded entries. And mlx5_lag_is_shared_fdb is checked, it returns
false if one of PF is unloaded. In such case,
mlx5_esw_bridge_lag_rep_get() and its caller return NULL, instead of
the alive PF, and the flush is skipped.
Besides, the bridge fdb entry's lastuse is updated in mlx5 bridge
event handler. But this SWITCHDEV_FDB_ADD_TO_BRIDGE event can be
ignored in this case because the upper interface for bond is deleted,
and the entry will never be aged because lastuse is never updated.
To make things worse, as the entry is alive, mlx5 bridge workqueue
keeps sending that event, which is then handled by kernel bridge
notifier. It causes the following crash when accessing the passed bond
netdev which is already destroyed.
To fix this issue, remove such checks. LAG state is already checked in
commit 15f8f168952f ("net/mlx5: Bridge, verify LAG state when adding
bond to bridge"), driver still need to skip offload if LAG becomes
invalid state after initialization.
Oops: stack segment: 0000 [#1] SMP
CPU: 3 UID: 0 PID: 23695 Comm: kworker/u40:3 Tainted: G OE 6.11.0_mlnx #1
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Workqueue: mlx5_bridge_wq mlx5_esw_bridge_update_work [mlx5_core]
RIP: 0010:br_switchdev_event+0x2c/0x110 [bridge]
Code: 44 00 00 48 8b 02 48 f7 00 00 02 00 00 74 69 41 54 55 53 48 83 ec 08 48 8b a8 08 01 00 00 48 85 ed 74 4a 48 83 fe 02 48 89 d3 <4c> 8b 65 00 74 23 76 49 48 83 fe 05 74 7e 48 83 fe 06 75 2f 0f b7
RSP: 0018:ffffc900092cfda0 EFLAGS: 00010297
RAX: ffff888123bfe000 RBX: ffffc900092cfe08 RCX: 00000000ffffffff
RDX: ffffc900092cfe08 RSI: 0000000000000001 RDI: ffffffffa0c585f0
RBP: 6669746f6e690a30 R08: 0000000000000000 R09: ffff888123ae92c8
R10: 0000000000000000 R11: fefefefefefefeff R12: ffff888123ae9c60
R13: 0000000000000001 R14: ffffc900092cfe08 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88852c980000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f15914c8734 CR3: 0000000002830005 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
? __die_body+0x1a/0x60
? die+0x38/0x60
? do_trap+0x10b/0x120
? do_error_trap+0x64/0xa0
? exc_stack_segment+0x33/0x50
? asm_exc_stack_segment+0x22/0x30
? br_switchdev_event+0x2c/0x110 [bridge]
? sched_balance_newidle.isra.149+0x248/0x390
notifier_call_chain+0x4b/0xa0
atomic_notifier_call_chain+0x16/0x20
mlx5_esw_bridge_update+0xec/0x170 [mlx5_core]
mlx5_esw_bridge_update_work+0x19/0x40 [mlx5_core]
process_scheduled_works+0x81/0x390
worker_thread+0x106/0x250
? bh_worker+0x110/0x110
kthread+0xb7/0xe0
? kthread_park+0x80/0x80
ret_from_fork+0x2d/0x50
? kthread_park+0x80/0x80
ret_from_fork_asm+0x11/0x20
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla1280: Fix kernel oops when debug level > 2
A null dereference or oops exception will eventually occur when qla1280.c
driver is compiled with DEBUG_QLA1280 enabled and ql_debug_level > 2. I
think its clear from the code that the intention here is sg_dma_len(s) not
length of sg_next(s) when printing the debug info. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: appleir: Fix potential NULL dereference at raw event handle
Syzkaller reports a NULL pointer dereference issue in input_event().
BUG: KASAN: null-ptr-deref in instrument_atomic_read include/linux/instrumented.h:68 [inline]
BUG: KASAN: null-ptr-deref in _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline]
BUG: KASAN: null-ptr-deref in is_event_supported drivers/input/input.c:67 [inline]
BUG: KASAN: null-ptr-deref in input_event+0x42/0xa0 drivers/input/input.c:395
Read of size 8 at addr 0000000000000028 by task syz-executor199/2949
CPU: 0 UID: 0 PID: 2949 Comm: syz-executor199 Not tainted 6.13.0-rc4-syzkaller-00076-gf097a36ef88d #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
kasan_report+0xd9/0x110 mm/kasan/report.c:602
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189
instrument_atomic_read include/linux/instrumented.h:68 [inline]
_test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline]
is_event_supported drivers/input/input.c:67 [inline]
input_event+0x42/0xa0 drivers/input/input.c:395
input_report_key include/linux/input.h:439 [inline]
key_down drivers/hid/hid-appleir.c:159 [inline]
appleir_raw_event+0x3e5/0x5e0 drivers/hid/hid-appleir.c:232
__hid_input_report.constprop.0+0x312/0x440 drivers/hid/hid-core.c:2111
hid_ctrl+0x49f/0x550 drivers/hid/usbhid/hid-core.c:484
__usb_hcd_giveback_urb+0x389/0x6e0 drivers/usb/core/hcd.c:1650
usb_hcd_giveback_urb+0x396/0x450 drivers/usb/core/hcd.c:1734
dummy_timer+0x17f7/0x3960 drivers/usb/gadget/udc/dummy_hcd.c:1993
__run_hrtimer kernel/time/hrtimer.c:1739 [inline]
__hrtimer_run_queues+0x20a/0xae0 kernel/time/hrtimer.c:1803
hrtimer_run_softirq+0x17d/0x350 kernel/time/hrtimer.c:1820
handle_softirqs+0x206/0x8d0 kernel/softirq.c:561
__do_softirq kernel/softirq.c:595 [inline]
invoke_softirq kernel/softirq.c:435 [inline]
__irq_exit_rcu+0xfa/0x160 kernel/softirq.c:662
irq_exit_rcu+0x9/0x30 kernel/softirq.c:678
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline]
sysvec_apic_timer_interrupt+0x90/0xb0 arch/x86/kernel/apic/apic.c:1049
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:702
__mod_timer+0x8f6/0xdc0 kernel/time/timer.c:1185
add_timer+0x62/0x90 kernel/time/timer.c:1295
schedule_timeout+0x11f/0x280 kernel/time/sleep_timeout.c:98
usbhid_wait_io+0x1c7/0x380 drivers/hid/usbhid/hid-core.c:645
usbhid_init_reports+0x19f/0x390 drivers/hid/usbhid/hid-core.c:784
hiddev_ioctl+0x1133/0x15b0 drivers/hid/usbhid/hiddev.c:794
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:906 [inline]
__se_sys_ioctl fs/ioctl.c:892 [inline]
__x64_sys_ioctl+0x190/0x200 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
This happens due to the malformed report items sent by the emulated device
which results in a report, that has no fields, being added to the report list.
Due to this appleir_input_configured() is never called, hidinput_connect()
fails which results in the HID_CLAIMED_INPUT flag is not being set. However,
it does not make appleir_probe() fail and lets the event callback to be
called without the associated input device.
Thus, add a check for the HID_CLAIMED_INPUT flag and leave the event hook
early if the driver didn't claim any input_dev for some reason. Moreover,
some other hid drivers accessing input_dev in their event callbacks do have
similar checks, too.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix null check for pipe_ctx->plane_state in resource_build_scaling_params
Null pointer dereference issue could occur when pipe_ctx->plane_state
is null. The fix adds a check to ensure 'pipe_ctx->plane_state' is not
null before accessing. This prevents a null pointer dereference.
Found by code review.
(cherry picked from commit 63e6a77ccf239337baa9b1e7787cde9fa0462092) |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Add check for mgmt_alloc_skb() in mgmt_remote_name()
Add check for the return value of mgmt_alloc_skb() in
mgmt_remote_name() to prevent null pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Add check for mgmt_alloc_skb() in mgmt_device_connected()
Add check for the return value of mgmt_alloc_skb() in
mgmt_device_connected() to prevent null pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: Fix NULL pointer access
Resources should be released only after all threads that utilize them
have been destroyed.
This commit ensures that resources are not released prematurely by waiting
for the associated workqueue to complete before deallocating them. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: renesas_usbhs: Flush the notify_hotplug_work
When performing continuous unbind/bind operations on the USB drivers
available on the Renesas RZ/G2L SoC, a kernel crash with the message
"Unable to handle kernel NULL pointer dereference at virtual address"
may occur. This issue points to the usbhsc_notify_hotplug() function.
Flush the delayed work to avoid its execution when driver resources are
unavailable. |