| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Avoid __bpf_prog_ret0_warn when jit fails
syzkaller reported an issue:
WARNING: CPU: 3 PID: 217 at kernel/bpf/core.c:2357 __bpf_prog_ret0_warn+0xa/0x20 kernel/bpf/core.c:2357
Modules linked in:
CPU: 3 UID: 0 PID: 217 Comm: kworker/u32:6 Not tainted 6.15.0-rc4-syzkaller-00040-g8bac8898fe39
RIP: 0010:__bpf_prog_ret0_warn+0xa/0x20 kernel/bpf/core.c:2357
Call Trace:
<TASK>
bpf_dispatcher_nop_func include/linux/bpf.h:1316 [inline]
__bpf_prog_run include/linux/filter.h:718 [inline]
bpf_prog_run include/linux/filter.h:725 [inline]
cls_bpf_classify+0x74a/0x1110 net/sched/cls_bpf.c:105
...
When creating bpf program, 'fp->jit_requested' depends on bpf_jit_enable.
This issue is triggered because of CONFIG_BPF_JIT_ALWAYS_ON is not set
and bpf_jit_enable is set to 1, causing the arch to attempt JIT the prog,
but jit failed due to FAULT_INJECTION. As a result, incorrectly
treats the program as valid, when the program runs it calls
`__bpf_prog_ret0_warn` and triggers the WARN_ON_ONCE(1). |
| In the Linux kernel, the following vulnerability has been resolved:
kernfs: Relax constraint in draining guard
The active reference lifecycle provides the break/unbreak mechanism but
the active reference is not truly active after unbreak -- callers don't
use it afterwards but it's important for proper pairing of kn->active
counting. Assuming this mechanism is in place, the WARN check in
kernfs_should_drain_open_files() is too sensitive -- it may transiently
catch those (rightful) callers between
kernfs_unbreak_active_protection() and kernfs_put_active() as found out by Chen
Ridong:
kernfs_remove_by_name_ns kernfs_get_active // active=1
__kernfs_remove // active=0x80000002
kernfs_drain ...
wait_event
//waiting (active == 0x80000001)
kernfs_break_active_protection
// active = 0x80000001
// continue
kernfs_unbreak_active_protection
// active = 0x80000002
...
kernfs_should_drain_open_files
// warning occurs
kernfs_put_active
To avoid the false positives (mind panic_on_warn) remove the check altogether.
(This is meant as quick fix, I think active reference break/unbreak may be
simplified with larger rework.) |
| In the Linux kernel, the following vulnerability has been resolved:
net: lan743x: fix potential out-of-bounds write in lan743x_ptp_io_event_clock_get()
Before calling lan743x_ptp_io_event_clock_get(), the 'channel' value
is checked against the maximum value of PCI11X1X_PTP_IO_MAX_CHANNELS(8).
This seems correct and aligns with the PTP interrupt status register
(PTP_INT_STS) specifications.
However, lan743x_ptp_io_event_clock_get() writes to ptp->extts[] with
only LAN743X_PTP_N_EXTTS(4) elements, using channel as an index:
lan743x_ptp_io_event_clock_get(..., u8 channel,...)
{
...
/* Update Local timestamp */
extts = &ptp->extts[channel];
extts->ts.tv_sec = sec;
...
}
To avoid an out-of-bounds write and utilize all the supported GPIO
inputs, set LAN743X_PTP_N_EXTTS to 8.
Detected using the static analysis tool - Svace. |
| In the Linux kernel, the following vulnerability has been resolved:
calipso: Fix null-ptr-deref in calipso_req_{set,del}attr().
syzkaller reported a null-ptr-deref in sock_omalloc() while allocating
a CALIPSO option. [0]
The NULL is of struct sock, which was fetched by sk_to_full_sk() in
calipso_req_setattr().
Since commit a1a5344ddbe8 ("tcp: avoid two atomic ops for syncookies"),
reqsk->rsk_listener could be NULL when SYN Cookie is returned to its
client, as hinted by the leading SYN Cookie log.
Here are 3 options to fix the bug:
1) Return 0 in calipso_req_setattr()
2) Return an error in calipso_req_setattr()
3) Alaways set rsk_listener
1) is no go as it bypasses LSM, but 2) effectively disables SYN Cookie
for CALIPSO. 3) is also no go as there have been many efforts to reduce
atomic ops and make TCP robust against DDoS. See also commit 3b24d854cb35
("tcp/dccp: do not touch listener sk_refcnt under synflood").
As of the blamed commit, SYN Cookie already did not need refcounting,
and no one has stumbled on the bug for 9 years, so no CALIPSO user will
care about SYN Cookie.
Let's return an error in calipso_req_setattr() and calipso_req_delattr()
in the SYN Cookie case.
This can be reproduced by [1] on Fedora and now connect() of nc times out.
[0]:
TCP: request_sock_TCPv6: Possible SYN flooding on port [::]:20002. Sending cookies.
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000006: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000030-0x0000000000000037]
CPU: 3 UID: 0 PID: 12262 Comm: syz.1.2611 Not tainted 6.14.0 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
RIP: 0010:read_pnet include/net/net_namespace.h:406 [inline]
RIP: 0010:sock_net include/net/sock.h:655 [inline]
RIP: 0010:sock_kmalloc+0x35/0x170 net/core/sock.c:2806
Code: 89 d5 41 54 55 89 f5 53 48 89 fb e8 25 e3 c6 fd e8 f0 91 e3 00 48 8d 7b 30 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 26 01 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8b
RSP: 0018:ffff88811af89038 EFLAGS: 00010216
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffff888105266400
RDX: 0000000000000006 RSI: ffff88800c890000 RDI: 0000000000000030
RBP: 0000000000000050 R08: 0000000000000000 R09: ffff88810526640e
R10: ffffed1020a4cc81 R11: ffff88810526640f R12: 0000000000000000
R13: 0000000000000820 R14: ffff888105266400 R15: 0000000000000050
FS: 00007f0653a07640(0000) GS:ffff88811af80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f863ba096f4 CR3: 00000000163c0005 CR4: 0000000000770ef0
PKRU: 80000000
Call Trace:
<IRQ>
ipv6_renew_options+0x279/0x950 net/ipv6/exthdrs.c:1288
calipso_req_setattr+0x181/0x340 net/ipv6/calipso.c:1204
calipso_req_setattr+0x56/0x80 net/netlabel/netlabel_calipso.c:597
netlbl_req_setattr+0x18a/0x440 net/netlabel/netlabel_kapi.c:1249
selinux_netlbl_inet_conn_request+0x1fb/0x320 security/selinux/netlabel.c:342
selinux_inet_conn_request+0x1eb/0x2c0 security/selinux/hooks.c:5551
security_inet_conn_request+0x50/0xa0 security/security.c:4945
tcp_v6_route_req+0x22c/0x550 net/ipv6/tcp_ipv6.c:825
tcp_conn_request+0xec8/0x2b70 net/ipv4/tcp_input.c:7275
tcp_v6_conn_request+0x1e3/0x440 net/ipv6/tcp_ipv6.c:1328
tcp_rcv_state_process+0xafa/0x52b0 net/ipv4/tcp_input.c:6781
tcp_v6_do_rcv+0x8a6/0x1a40 net/ipv6/tcp_ipv6.c:1667
tcp_v6_rcv+0x505e/0x5b50 net/ipv6/tcp_ipv6.c:1904
ip6_protocol_deliver_rcu+0x17c/0x1da0 net/ipv6/ip6_input.c:436
ip6_input_finish+0x103/0x180 net/ipv6/ip6_input.c:480
NF_HOOK include/linux/netfilter.h:314 [inline]
NF_HOOK include/linux/netfilter.h:308 [inline]
ip6_input+0x13c/0x6b0 net/ipv6/ip6_input.c:491
dst_input include/net/dst.h:469 [inline]
ip6_rcv_finish net/ipv6/ip6_input.c:79 [inline]
ip6_rcv_finish+0xb6/0x490 net/ipv6/ip6_input.c:69
NF_HOOK include/linux/netfilter.h:314 [inline]
NF_HOOK include/linux/netf
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
thunderbolt: Do not double dequeue a configuration request
Some of our devices crash in tb_cfg_request_dequeue():
general protection fault, probably for non-canonical address 0xdead000000000122
CPU: 6 PID: 91007 Comm: kworker/6:2 Tainted: G U W 6.6.65
RIP: 0010:tb_cfg_request_dequeue+0x2d/0xa0
Call Trace:
<TASK>
? tb_cfg_request_dequeue+0x2d/0xa0
tb_cfg_request_work+0x33/0x80
worker_thread+0x386/0x8f0
kthread+0xed/0x110
ret_from_fork+0x38/0x50
ret_from_fork_asm+0x1b/0x30
The circumstances are unclear, however, the theory is that
tb_cfg_request_work() can be scheduled twice for a request:
first time via frame.callback from ring_work() and second
time from tb_cfg_request(). Both times kworkers will execute
tb_cfg_request_dequeue(), which results in double list_del()
from the ctl->request_queue (the list poison deference hints
at it: 0xdead000000000122).
Do not dequeue requests that don't have TB_CFG_REQUEST_ACTIVE
bit set. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix WARN() in get_bpf_raw_tp_regs
syzkaller reported an issue:
WARNING: CPU: 3 PID: 5971 at kernel/trace/bpf_trace.c:1861 get_bpf_raw_tp_regs+0xa4/0x100 kernel/trace/bpf_trace.c:1861
Modules linked in:
CPU: 3 UID: 0 PID: 5971 Comm: syz-executor205 Not tainted 6.15.0-rc5-syzkaller-00038-g707df3375124 #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:get_bpf_raw_tp_regs+0xa4/0x100 kernel/trace/bpf_trace.c:1861
RSP: 0018:ffffc90003636fa8 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000003 RCX: ffffffff81c6bc4c
RDX: ffff888032efc880 RSI: ffffffff81c6bc83 RDI: 0000000000000005
RBP: ffff88806a730860 R08: 0000000000000005 R09: 0000000000000003
R10: 0000000000000004 R11: 0000000000000000 R12: 0000000000000004
R13: 0000000000000001 R14: ffffc90003637008 R15: 0000000000000900
FS: 0000000000000000(0000) GS:ffff8880d6cdf000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7baee09130 CR3: 0000000029f5a000 CR4: 0000000000352ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
____bpf_get_stack_raw_tp kernel/trace/bpf_trace.c:1934 [inline]
bpf_get_stack_raw_tp+0x24/0x160 kernel/trace/bpf_trace.c:1931
bpf_prog_ec3b2eefa702d8d3+0x43/0x47
bpf_dispatcher_nop_func include/linux/bpf.h:1316 [inline]
__bpf_prog_run include/linux/filter.h:718 [inline]
bpf_prog_run include/linux/filter.h:725 [inline]
__bpf_trace_run kernel/trace/bpf_trace.c:2363 [inline]
bpf_trace_run3+0x23f/0x5a0 kernel/trace/bpf_trace.c:2405
__bpf_trace_mmap_lock_acquire_returned+0xfc/0x140 include/trace/events/mmap_lock.h:47
__traceiter_mmap_lock_acquire_returned+0x79/0xc0 include/trace/events/mmap_lock.h:47
__do_trace_mmap_lock_acquire_returned include/trace/events/mmap_lock.h:47 [inline]
trace_mmap_lock_acquire_returned include/trace/events/mmap_lock.h:47 [inline]
__mmap_lock_do_trace_acquire_returned+0x138/0x1f0 mm/mmap_lock.c:35
__mmap_lock_trace_acquire_returned include/linux/mmap_lock.h:36 [inline]
mmap_read_trylock include/linux/mmap_lock.h:204 [inline]
stack_map_get_build_id_offset+0x535/0x6f0 kernel/bpf/stackmap.c:157
__bpf_get_stack+0x307/0xa10 kernel/bpf/stackmap.c:483
____bpf_get_stack kernel/bpf/stackmap.c:499 [inline]
bpf_get_stack+0x32/0x40 kernel/bpf/stackmap.c:496
____bpf_get_stack_raw_tp kernel/trace/bpf_trace.c:1941 [inline]
bpf_get_stack_raw_tp+0x124/0x160 kernel/trace/bpf_trace.c:1931
bpf_prog_ec3b2eefa702d8d3+0x43/0x47
Tracepoint like trace_mmap_lock_acquire_returned may cause nested call
as the corner case show above, which will be resolved with more general
method in the future. As a result, WARN_ON_ONCE will be triggered. As
Alexei suggested, remove the WARN_ON_ONCE first. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: at91: Fix possible out-of-boundary access
at91_gpio_probe() doesn't check that given OF alias is not available or
something went wrong when trying to get it. This might have consequences
when accessing gpio_chips array with that value as an index. Note, that
BUG() can be compiled out and hence won't actually perform the required
checks. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix node corruption in ar->arvifs list
In current WLAN recovery code flow, ath11k_core_halt() only
reinitializes the "arvifs" list head. This will cause the
list node immediately following the list head to become an
invalid list node. Because the prev of that node still points
to the list head "arvifs", but the next of the list head "arvifs"
no longer points to that list node.
When a WLAN recovery occurs during the execution of a vif
removal, and it happens before the spin_lock_bh(&ar->data_lock)
in ath11k_mac_op_remove_interface(), list_del() will detect the
previously mentioned situation, thereby triggering a kernel panic.
The fix is to remove and reinitialize all vif list nodes from the
list head "arvifs" during WLAN halt. The reinitialization is to make
the list nodes valid, ensuring that the list_del() in
ath11k_mac_op_remove_interface() can execute normally.
Call trace:
__list_del_entry_valid_or_report+0xb8/0xd0
ath11k_mac_op_remove_interface+0xb0/0x27c [ath11k]
drv_remove_interface+0x48/0x194 [mac80211]
ieee80211_do_stop+0x6e0/0x844 [mac80211]
ieee80211_stop+0x44/0x17c [mac80211]
__dev_close_many+0xac/0x150
__dev_change_flags+0x194/0x234
dev_change_flags+0x24/0x6c
devinet_ioctl+0x3a0/0x670
inet_ioctl+0x200/0x248
sock_do_ioctl+0x60/0x118
sock_ioctl+0x274/0x35c
__arm64_sys_ioctl+0xac/0xf0
invoke_syscall+0x48/0x114
...
Tested-on: QCA6698AQ hw2.1 PCI WLAN.HSP.1.1-04591-QCAHSPSWPL_V1_V2_SILICONZ_IOE-1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: atm: fix /proc/net/atm/lec handling
/proc/net/atm/lec must ensure safety against dev_lec[] changes.
It appears it had dev_put() calls without prior dev_hold(),
leading to imbalance and UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
xenbus: Use kref to track req lifetime
Marek reported seeing a NULL pointer fault in the xenbus_thread
callstack:
BUG: kernel NULL pointer dereference, address: 0000000000000000
RIP: e030:__wake_up_common+0x4c/0x180
Call Trace:
<TASK>
__wake_up_common_lock+0x82/0xd0
process_msg+0x18e/0x2f0
xenbus_thread+0x165/0x1c0
process_msg+0x18e is req->cb(req). req->cb is set to xs_wake_up(), a
thin wrapper around wake_up(), or xenbus_dev_queue_reply(). It seems
like it was xs_wake_up() in this case.
It seems like req may have woken up the xs_wait_for_reply(), which
kfree()ed the req. When xenbus_thread resumes, it faults on the zero-ed
data.
Linux Device Drivers 2nd edition states:
"Normally, a wake_up call can cause an immediate reschedule to happen,
meaning that other processes might run before wake_up returns."
... which would match the behaviour observed.
Change to keeping two krefs on each request. One for the caller, and
one for xenbus_thread. Each will kref_put() when finished, and the last
will free it.
This use of kref matches the description in
Documentation/core-api/kref.rst |
| In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Add job to pending list if the reset was skipped
When a CL/CSD job times out, we check if the GPU has made any progress
since the last timeout. If so, instead of resetting the hardware, we skip
the reset and let the timer get rearmed. This gives long-running jobs a
chance to complete.
However, when `timedout_job()` is called, the job in question is removed
from the pending list, which means it won't be automatically freed through
`free_job()`. Consequently, when we skip the reset and keep the job
running, the job won't be freed when it finally completes.
This situation leads to a memory leak, as exposed in [1] and [2].
Similarly to commit 704d3d60fec4 ("drm/etnaviv: don't block scheduler when
GPU is still active"), this patch ensures the job is put back on the
pending list when extending the timeout. |
| In the Linux kernel, the following vulnerability has been resolved:
sch_htb: make htb_deactivate() idempotent
Alan reported a NULL pointer dereference in htb_next_rb_node()
after we made htb_qlen_notify() idempotent.
It turns out in the following case it introduced some regression:
htb_dequeue_tree():
|-> fq_codel_dequeue()
|-> qdisc_tree_reduce_backlog()
|-> htb_qlen_notify()
|-> htb_deactivate()
|-> htb_next_rb_node()
|-> htb_deactivate()
For htb_next_rb_node(), after calling the 1st htb_deactivate(), the
clprio[prio]->ptr could be already set to NULL, which means
htb_next_rb_node() is vulnerable here.
For htb_deactivate(), although we checked qlen before calling it, in
case of qlen==0 after qdisc_tree_reduce_backlog(), we may call it again
which triggers the warning inside.
To fix the issues here, we need to:
1) Make htb_deactivate() idempotent, that is, simply return if we
already call it before.
2) Make htb_next_rb_node() safe against ptr==NULL.
Many thanks to Alan for testing and for the reproducer. |
| In the Linux kernel, the following vulnerability has been resolved:
can: bcm: add missing rcu read protection for procfs content
When the procfs content is generated for a bcm_op which is in the process
to be removed the procfs output might show unreliable data (UAF).
As the removal of bcm_op's is already implemented with rcu handling this
patch adds the missing rcu_read_lock() and makes sure the list entries
are properly removed under rcu protection. |
| In the Linux kernel, the following vulnerability has been resolved:
can: bcm: add locking for bcm_op runtime updates
The CAN broadcast manager (CAN BCM) can send a sequence of CAN frames via
hrtimer. The content and also the length of the sequence can be changed
resp reduced at runtime where the 'currframe' counter is then set to zero.
Although this appeared to be a safe operation the updates of 'currframe'
can be triggered from user space and hrtimer context in bcm_can_tx().
Anderson Nascimento created a proof of concept that triggered a KASAN
slab-out-of-bounds read access which can be prevented with a spin_lock_bh.
At the rework of bcm_can_tx() the 'count' variable has been moved into
the protected section as this variable can be modified from both contexts
too. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: k3-udma: Add missing locking
Recent kernels complain about a missing lock in k3-udma.c when the lock
validator is enabled:
[ 4.128073] WARNING: CPU: 0 PID: 746 at drivers/dma/ti/../virt-dma.h:169 udma_start.isra.0+0x34/0x238
[ 4.137352] CPU: 0 UID: 0 PID: 746 Comm: kworker/0:3 Not tainted 6.12.9-arm64 #28
[ 4.144867] Hardware name: pp-v12 (DT)
[ 4.148648] Workqueue: events udma_check_tx_completion
[ 4.153841] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 4.160834] pc : udma_start.isra.0+0x34/0x238
[ 4.165227] lr : udma_start.isra.0+0x30/0x238
[ 4.169618] sp : ffffffc083cabcf0
[ 4.172963] x29: ffffffc083cabcf0 x28: 0000000000000000 x27: ffffff800001b005
[ 4.180167] x26: ffffffc0812f0000 x25: 0000000000000000 x24: 0000000000000000
[ 4.187370] x23: 0000000000000001 x22: 00000000e21eabe9 x21: ffffff8000fa0670
[ 4.194571] x20: ffffff8001b6bf00 x19: ffffff8000fa0430 x18: ffffffc083b95030
[ 4.201773] x17: 0000000000000000 x16: 00000000f0000000 x15: 0000000000000048
[ 4.208976] x14: 0000000000000048 x13: 0000000000000000 x12: 0000000000000001
[ 4.216179] x11: ffffffc08151a240 x10: 0000000000003ea1 x9 : ffffffc08046ab68
[ 4.223381] x8 : ffffffc083cabac0 x7 : ffffffc081df3718 x6 : 0000000000029fc8
[ 4.230583] x5 : ffffffc0817ee6d8 x4 : 0000000000000bc0 x3 : 0000000000000000
[ 4.237784] x2 : 0000000000000000 x1 : 00000000001fffff x0 : 0000000000000000
[ 4.244986] Call trace:
[ 4.247463] udma_start.isra.0+0x34/0x238
[ 4.251509] udma_check_tx_completion+0xd0/0xdc
[ 4.256076] process_one_work+0x244/0x3fc
[ 4.260129] process_scheduled_works+0x6c/0x74
[ 4.264610] worker_thread+0x150/0x1dc
[ 4.268398] kthread+0xd8/0xe8
[ 4.271492] ret_from_fork+0x10/0x20
[ 4.275107] irq event stamp: 220
[ 4.278363] hardirqs last enabled at (219): [<ffffffc080a27c7c>] _raw_spin_unlock_irq+0x38/0x50
[ 4.287183] hardirqs last disabled at (220): [<ffffffc080a1c154>] el1_dbg+0x24/0x50
[ 4.294879] softirqs last enabled at (182): [<ffffffc080037e68>] handle_softirqs+0x1c0/0x3cc
[ 4.303437] softirqs last disabled at (177): [<ffffffc080010170>] __do_softirq+0x1c/0x28
[ 4.311559] ---[ end trace 0000000000000000 ]---
This commit adds the missing locking. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: uclogic: Add NULL check in uclogic_input_configured()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
uclogic_input_configured() does not check for this case, which results
in a NULL pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: disable napi on driver removal
A warning on driver removal started occurring after commit 9dd05df8403b
("net: warn if NAPI instance wasn't shut down"). Disable tx napi before
deleting it in mt76_dma_cleanup().
WARNING: CPU: 4 PID: 18828 at net/core/dev.c:7288 __netif_napi_del_locked+0xf0/0x100
CPU: 4 UID: 0 PID: 18828 Comm: modprobe Not tainted 6.15.0-rc4 #4 PREEMPT(lazy)
Hardware name: ASUS System Product Name/PRIME X670E-PRO WIFI, BIOS 3035 09/05/2024
RIP: 0010:__netif_napi_del_locked+0xf0/0x100
Call Trace:
<TASK>
mt76_dma_cleanup+0x54/0x2f0 [mt76]
mt7921_pci_remove+0xd5/0x190 [mt7921e]
pci_device_remove+0x47/0xc0
device_release_driver_internal+0x19e/0x200
driver_detach+0x48/0x90
bus_remove_driver+0x6d/0xf0
pci_unregister_driver+0x2e/0xb0
__do_sys_delete_module.isra.0+0x197/0x2e0
do_syscall_64+0x7b/0x160
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Tested with mt7921e but the same pattern can be actually applied to other
mt76 drivers calling mt76_dma_cleanup() during removal. Tx napi is enabled
in their *_dma_init() functions and only toggled off and on again inside
their suspend/resume/reset paths. So it should be okay to disable tx
napi in such a generic way.
Found by Linux Verification Center (linuxtesting.org). |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: fix memory leak in error handling path of idxd_alloc
Memory allocated for idxd is not freed if an error occurs during
idxd_alloc(). To fix it, free the allocated memory in the reverse order
of allocation before exiting the function in case of an error. |
| In the Linux kernel, the following vulnerability has been resolved:
net/tls: fix kernel panic when alloc_page failed
We cannot set frag_list to NULL pointer when alloc_page failed.
It will be used in tls_strp_check_queue_ok when the next time
tls_strp_read_sock is called.
This is because we don't reset full_len in tls_strp_flush_anchor_copy()
so the recv path will try to continue handling the partial record
on the next call but we dettached the rcvq from the frag list.
Alternative fix would be to reset full_len.
Unable to handle kernel NULL pointer dereference
at virtual address 0000000000000028
Call trace:
tls_strp_check_rcv+0x128/0x27c
tls_strp_data_ready+0x34/0x44
tls_data_ready+0x3c/0x1f0
tcp_data_ready+0x9c/0xe4
tcp_data_queue+0xf6c/0x12d0
tcp_rcv_established+0x52c/0x798 |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Disable MACsec offload for uplink representor profile
MACsec offload is not supported in switchdev mode for uplink
representors. When switching to the uplink representor profile, the
MACsec offload feature must be cleared from the netdevice's features.
If left enabled, attempts to add offloads result in a null pointer
dereference, as the uplink representor does not support MACsec offload
even though the feature bit remains set.
Clear NETIF_F_HW_MACSEC in mlx5e_fix_uplink_rep_features().
Kernel log:
Oops: general protection fault, probably for non-canonical address 0xdffffc000000000f: 0000 [#1] SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000078-0x000000000000007f]
CPU: 29 UID: 0 PID: 4714 Comm: ip Not tainted 6.14.0-rc4_for_upstream_debug_2025_03_02_17_35 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:__mutex_lock+0x128/0x1dd0
Code: d0 7c 08 84 d2 0f 85 ad 15 00 00 8b 35 91 5c fe 03 85 f6 75 29 49 8d 7e 60 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 a6 15 00 00 4d 3b 76 60 0f 85 fd 0b 00 00 65 ff
RSP: 0018:ffff888147a4f160 EFLAGS: 00010206
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000001
RDX: 000000000000000f RSI: 0000000000000000 RDI: 0000000000000078
RBP: ffff888147a4f2e0 R08: ffffffffa05d2c19 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: dffffc0000000000 R14: 0000000000000018 R15: ffff888152de0000
FS: 00007f855e27d800(0000) GS:ffff88881ee80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000004e5768 CR3: 000000013ae7c005 CR4: 0000000000372eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
Call Trace:
<TASK>
? die_addr+0x3d/0xa0
? exc_general_protection+0x144/0x220
? asm_exc_general_protection+0x22/0x30
? mlx5e_macsec_add_secy+0xf9/0x700 [mlx5_core]
? __mutex_lock+0x128/0x1dd0
? lockdep_set_lock_cmp_fn+0x190/0x190
? mlx5e_macsec_add_secy+0xf9/0x700 [mlx5_core]
? mutex_lock_io_nested+0x1ae0/0x1ae0
? lock_acquire+0x1c2/0x530
? macsec_upd_offload+0x145/0x380
? lockdep_hardirqs_on_prepare+0x400/0x400
? kasan_save_stack+0x30/0x40
? kasan_save_stack+0x20/0x40
? kasan_save_track+0x10/0x30
? __kasan_kmalloc+0x77/0x90
? __kmalloc_noprof+0x249/0x6b0
? genl_family_rcv_msg_attrs_parse.constprop.0+0xb5/0x240
? mlx5e_macsec_add_secy+0xf9/0x700 [mlx5_core]
mlx5e_macsec_add_secy+0xf9/0x700 [mlx5_core]
? mlx5e_macsec_add_rxsa+0x11a0/0x11a0 [mlx5_core]
macsec_update_offload+0x26c/0x820
? macsec_set_mac_address+0x4b0/0x4b0
? lockdep_hardirqs_on_prepare+0x284/0x400
? _raw_spin_unlock_irqrestore+0x47/0x50
macsec_upd_offload+0x2c8/0x380
? macsec_update_offload+0x820/0x820
? __nla_parse+0x22/0x30
? genl_family_rcv_msg_attrs_parse.constprop.0+0x15e/0x240
genl_family_rcv_msg_doit+0x1cc/0x2a0
? genl_family_rcv_msg_attrs_parse.constprop.0+0x240/0x240
? cap_capable+0xd4/0x330
genl_rcv_msg+0x3ea/0x670
? genl_family_rcv_msg_dumpit+0x2a0/0x2a0
? lockdep_set_lock_cmp_fn+0x190/0x190
? macsec_update_offload+0x820/0x820
netlink_rcv_skb+0x12b/0x390
? genl_family_rcv_msg_dumpit+0x2a0/0x2a0
? netlink_ack+0xd80/0xd80
? rwsem_down_read_slowpath+0xf90/0xf90
? netlink_deliver_tap+0xcd/0xac0
? netlink_deliver_tap+0x155/0xac0
? _copy_from_iter+0x1bb/0x12c0
genl_rcv+0x24/0x40
netlink_unicast+0x440/0x700
? netlink_attachskb+0x760/0x760
? lock_acquire+0x1c2/0x530
? __might_fault+0xbb/0x170
netlink_sendmsg+0x749/0xc10
? netlink_unicast+0x700/0x700
? __might_fault+0xbb/0x170
? netlink_unicast+0x700/0x700
__sock_sendmsg+0xc5/0x190
____sys_sendmsg+0x53f/0x760
? import_iovec+0x7/0x10
? kernel_sendmsg+0x30/0x30
? __copy_msghdr+0x3c0/0x3c0
? filter_irq_stacks+0x90/0x90
? stack_depot_save_flags+0x28/0xa30
___sys_sen
---truncated--- |