CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix double uncharge the mem of sk_msg
If tcp_bpf_sendmsg is running during a tear down operation, psock may be
freed.
tcp_bpf_sendmsg()
tcp_bpf_send_verdict()
sk_msg_return()
tcp_bpf_sendmsg_redir()
unlikely(!psock))
sk_msg_free()
The mem of msg has been uncharged in tcp_bpf_send_verdict() by
sk_msg_return(), and would be uncharged by sk_msg_free() again. When psock
is null, we can simply returning an error code, this would then trigger
the sk_msg_free_nocharge in the error path of __SK_REDIRECT and would have
the side effect of throwing an error up to user space. This would be a
slight change in behavior from user side but would look the same as an
error if the redirect on the socket threw an error.
This issue can cause the following info:
WARNING: CPU: 0 PID: 2136 at net/ipv4/af_inet.c:155 inet_sock_destruct+0x13c/0x260
Call Trace:
<TASK>
__sk_destruct+0x24/0x1f0
sk_psock_destroy+0x19b/0x1c0
process_one_work+0x1b3/0x3c0
worker_thread+0x30/0x350
? process_one_work+0x3c0/0x3c0
kthread+0xe6/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_uart: add missing NULL check in h5_enqueue
Syzbot hit general protection fault in __pm_runtime_resume(). The problem
was in missing NULL check.
hu->serdev can be NULL and we should not blindly pass &serdev->dev
somewhere, since it will cause GPF. |
In the Linux kernel, the following vulnerability has been resolved:
crypto: octeontx2 - remove CONFIG_DM_CRYPT check
No issues were found while using the driver with dm-crypt enabled. So
CONFIG_DM_CRYPT check in the driver can be removed.
This also fixes the NULL pointer dereference in driver release if
CONFIG_DM_CRYPT is enabled.
...
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
...
Call trace:
crypto_unregister_alg+0x68/0xfc
crypto_unregister_skciphers+0x44/0x60
otx2_cpt_crypto_exit+0x100/0x1a0
otx2_cptvf_remove+0xf8/0x200
pci_device_remove+0x3c/0xd4
__device_release_driver+0x188/0x234
device_release_driver+0x2c/0x4c
... |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gem: add missing boundary check in vm_access
A missing bounds check in vm_access() can lead to an out-of-bounds read
or write in the adjacent memory area, since the len attribute is not
validated before the memcpy later in the function, potentially hitting:
[ 183.637831] BUG: unable to handle page fault for address: ffffc90000c86000
[ 183.637934] #PF: supervisor read access in kernel mode
[ 183.637997] #PF: error_code(0x0000) - not-present page
[ 183.638059] PGD 100000067 P4D 100000067 PUD 100258067 PMD 106341067 PTE 0
[ 183.638144] Oops: 0000 [#2] PREEMPT SMP NOPTI
[ 183.638201] CPU: 3 PID: 1790 Comm: poc Tainted: G D 5.17.0-rc6-ci-drm-11296+ #1
[ 183.638298] Hardware name: Intel Corporation CoffeeLake Client Platform/CoffeeLake H DDR4 RVP, BIOS CNLSFWR1.R00.X208.B00.1905301319 05/30/2019
[ 183.638430] RIP: 0010:memcpy_erms+0x6/0x10
[ 183.640213] RSP: 0018:ffffc90001763d48 EFLAGS: 00010246
[ 183.641117] RAX: ffff888109c14000 RBX: ffff888111bece40 RCX: 0000000000000ffc
[ 183.642029] RDX: 0000000000001000 RSI: ffffc90000c86000 RDI: ffff888109c14004
[ 183.642946] RBP: 0000000000000ffc R08: 800000000000016b R09: 0000000000000000
[ 183.643848] R10: ffffc90000c85000 R11: 0000000000000048 R12: 0000000000001000
[ 183.644742] R13: ffff888111bed190 R14: ffff888109c14000 R15: 0000000000001000
[ 183.645653] FS: 00007fe5ef807540(0000) GS:ffff88845b380000(0000) knlGS:0000000000000000
[ 183.646570] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 183.647481] CR2: ffffc90000c86000 CR3: 000000010ff02006 CR4: 00000000003706e0
[ 183.648384] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 183.649271] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 183.650142] Call Trace:
[ 183.650988] <TASK>
[ 183.651793] vm_access+0x1f0/0x2a0 [i915]
[ 183.652726] __access_remote_vm+0x224/0x380
[ 183.653561] mem_rw.isra.0+0xf9/0x190
[ 183.654402] vfs_read+0x9d/0x1b0
[ 183.655238] ksys_read+0x63/0xe0
[ 183.656065] do_syscall_64+0x38/0xc0
[ 183.656882] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 183.657663] RIP: 0033:0x7fe5ef725142
[ 183.659351] RSP: 002b:00007ffe1e81c7e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
[ 183.660227] RAX: ffffffffffffffda RBX: 0000557055dfb780 RCX: 00007fe5ef725142
[ 183.661104] RDX: 0000000000001000 RSI: 00007ffe1e81d880 RDI: 0000000000000005
[ 183.661972] RBP: 00007ffe1e81e890 R08: 0000000000000030 R09: 0000000000000046
[ 183.662832] R10: 0000557055dfc2e0 R11: 0000000000000246 R12: 0000557055dfb1c0
[ 183.663691] R13: 00007ffe1e81e980 R14: 0000000000000000 R15: 0000000000000000
Changes since v1:
- Updated if condition with range_overflows_t [Chris Wilson]
[mauld: tidy up the commit message and add Cc: stable]
(cherry picked from commit 661412e301e2ca86799aa4f400d1cf0bd38c57c6) |
In the Linux kernel, the following vulnerability has been resolved:
watch_queue: Fix NULL dereference in error cleanup
In watch_queue_set_size(), the error cleanup code doesn't take account of
the fact that __free_page() can't handle a NULL pointer when trying to free
up buffer pages that did get allocated.
Fix this by only calling __free_page() on the pages actually allocated.
Without the fix, this can lead to something like the following:
BUG: KASAN: null-ptr-deref in __free_pages+0x1f/0x1b0 mm/page_alloc.c:5473
Read of size 4 at addr 0000000000000034 by task syz-executor168/3599
...
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
__kasan_report mm/kasan/report.c:446 [inline]
kasan_report.cold+0x66/0xdf mm/kasan/report.c:459
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0x13d/0x180 mm/kasan/generic.c:189
instrument_atomic_read include/linux/instrumented.h:71 [inline]
atomic_read include/linux/atomic/atomic-instrumented.h:27 [inline]
page_ref_count include/linux/page_ref.h:67 [inline]
put_page_testzero include/linux/mm.h:717 [inline]
__free_pages+0x1f/0x1b0 mm/page_alloc.c:5473
watch_queue_set_size+0x499/0x630 kernel/watch_queue.c:275
pipe_ioctl+0xac/0x2b0 fs/pipe.c:632
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae |
In the Linux kernel, the following vulnerability has been resolved:
watch_queue: Actually free the watch
free_watch() does everything barring actually freeing the watch object. Fix
this by adding the missing kfree.
kmemleak produces a report something like the following. Note that as an
address can be seen in the first word, the watch would appear to have gone
through call_rcu().
BUG: memory leak
unreferenced object 0xffff88810ce4a200 (size 96):
comm "syz-executor352", pid 3605, jiffies 4294947473 (age 13.720s)
hex dump (first 32 bytes):
e0 82 48 0d 81 88 ff ff 00 00 00 00 00 00 00 00 ..H.............
80 a2 e4 0c 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff8214e6cc>] kmalloc include/linux/slab.h:581 [inline]
[<ffffffff8214e6cc>] kzalloc include/linux/slab.h:714 [inline]
[<ffffffff8214e6cc>] keyctl_watch_key+0xec/0x2e0 security/keys/keyctl.c:1800
[<ffffffff8214ec84>] __do_sys_keyctl+0x3c4/0x490 security/keys/keyctl.c:2016
[<ffffffff84493a25>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff84493a25>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
[<ffffffff84600068>] entry_SYSCALL_64_after_hwframe+0x44/0xae |
In the Linux kernel, the following vulnerability has been resolved:
media: ti-vpe: cal: Fix a NULL pointer dereference in cal_ctx_v4l2_init_formats()
In cal_ctx_v4l2_init_formats(), devm_kzalloc() is assigned to
ctx->active_fmt and there is a dereference of it after that, which could
lead to NULL pointer dereference on failure of devm_kzalloc().
Fix this bug by adding a NULL check of ctx->active_fmt.
This bug was found by a static analyzer.
Builds with 'make allyesconfig' show no new warnings, and our static
analyzer no longer warns about this code. |
In the Linux kernel, the following vulnerability has been resolved:
media: usb: go7007: s2250-board: fix leak in probe()
Call i2c_unregister_device(audio) on this error path. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: rx-macro: fix accessing array out of bounds for enum type
Accessing enums using integer would result in array out of bounds access
on platforms like aarch64 where sizeof(long) is 8 compared to enum size
which is 4 bytes. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: va-macro: fix accessing array out of bounds for enum type
Accessing enums using integer would result in array out of bounds access
on platforms like aarch64 where sizeof(long) is 8 compared to enum size
which is 4 bytes. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: rx-macro: fix accessing compander for aux
AUX interpolator does not have compander, so check before accessing
compander data for this.
Without this checkan array of out bounds access will be made in
comp_enabled[] array. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wc938x: fix accessing array out of bounds for enum type
Accessing enums using integer would result in array out of bounds access
on platforms like aarch64 where sizeof(long) is 8 compared to enum size
which is 4 bytes.
Fix this by using enumerated items instead of integers. |
In the Linux kernel, the following vulnerability has been resolved:
tcp: add accessors to read/set tp->snd_cwnd
We had various bugs over the years with code
breaking the assumption that tp->snd_cwnd is greater
than zero.
Lately, syzbot reported the WARN_ON_ONCE(!tp->prior_cwnd) added
in commit 8b8a321ff72c ("tcp: fix zero cwnd in tcp_cwnd_reduction")
can trigger, and without a repro we would have to spend
considerable time finding the bug.
Instead of complaining too late, we want to catch where
and when tp->snd_cwnd is set to an illegal value. |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: zynqmp_dma: In struct zynqmp_dma_chan fix desc_size data type
In zynqmp_dma_alloc/free_chan_resources functions there is a
potential overflow in the below expressions.
dma_alloc_coherent(chan->dev, (2 * chan->desc_size *
ZYNQMP_DMA_NUM_DESCS),
&chan->desc_pool_p, GFP_KERNEL);
dma_free_coherent(chan->dev,(2 * ZYNQMP_DMA_DESC_SIZE(chan) *
ZYNQMP_DMA_NUM_DESCS),
chan->desc_pool_v, chan->desc_pool_p);
The arguments desc_size and ZYNQMP_DMA_NUM_DESCS were 32 bit. Though
this overflow condition is not observed but it is a potential problem
in the case of 32-bit multiplication. Hence fix it by changing the
desc_size data type to size_t.
In addition to coverity fix it also reuse ZYNQMP_DMA_DESC_SIZE macro in
dma_alloc_coherent API argument.
Addresses-Coverity: Event overflow_before_widen. |
In the Linux kernel, the following vulnerability has been resolved:
iio: accel: mma8452: use the correct logic to get mma8452_data
The original logic to get mma8452_data is wrong, the *dev point to
the device belong to iio_dev. we can't use this dev to find the
correct i2c_client. The original logic happen to work because it
finally use dev->driver_data to get iio_dev. Here use the API
to_i2c_client() is wrong and make reader confuse. To correct the
logic, it should be like this
struct mma8452_data *data = iio_priv(dev_get_drvdata(dev));
But after commit 8b7651f25962 ("iio: iio_device_alloc(): Remove
unnecessary self drvdata"), the upper logic also can't work.
When try to show the avialable scale in userspace, will meet kernel
dump, kernel handle NULL pointer dereference.
So use dev_to_iio_dev() to correct the logic.
Dual fixes tags as the second reflects when the bug was exposed, whilst
the first reflects when the original bug was introduced. |
In the Linux kernel, the following vulnerability has been resolved:
firmware: sysfb: fix platform-device leak in error path
Make sure to free the platform device also in the unlikely event that
registration fails. |
In the Linux kernel, the following vulnerability has been resolved:
remoteproc: Fix count check in rproc_coredump_write()
Check count for 0, to avoid a potential underflow. Make the check the
same as the one in rproc_recovery_write(). |
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix crash when mount with quota enabled
There is a reported crash when mounting ocfs2 with quota enabled.
RIP: 0010:ocfs2_qinfo_lock_res_init+0x44/0x50 [ocfs2]
Call Trace:
ocfs2_local_read_info+0xb9/0x6f0 [ocfs2]
dquot_load_quota_sb+0x216/0x470
dquot_load_quota_inode+0x85/0x100
ocfs2_enable_quotas+0xa0/0x1c0 [ocfs2]
ocfs2_fill_super.cold+0xc8/0x1bf [ocfs2]
mount_bdev+0x185/0x1b0
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
path_mount+0x465/0xac0
__x64_sys_mount+0x103/0x140
It is caused by when initializing dqi_gqlock, the corresponding dqi_type
and dqi_sb are not properly initialized.
This issue is introduced by commit 6c85c2c72819, which wants to avoid
accessing uninitialized variables in error cases. So make global quota
info properly initialized. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: pcm: Fix potential AB/BA lock with buffer_mutex and mmap_lock
syzbot caught a potential deadlock between the PCM
runtime->buffer_mutex and the mm->mmap_lock. It was brought by the
recent fix to cover the racy read/write and other ioctls, and in that
commit, I overlooked a (hopefully only) corner case that may take the
revert lock, namely, the OSS mmap. The OSS mmap operation
exceptionally allows to re-configure the parameters inside the OSS
mmap syscall, where mm->mmap_mutex is already held. Meanwhile, the
copy_from/to_user calls at read/write operations also take the
mm->mmap_lock internally, hence it may lead to a AB/BA deadlock.
A similar problem was already seen in the past and we fixed it with a
refcount (in commit b248371628aa). The former fix covered only the
call paths with OSS read/write and OSS ioctls, while we need to cover
the concurrent access via both ALSA and OSS APIs now.
This patch addresses the problem above by replacing the buffer_mutex
lock in the read/write operations with a refcount similar as we've
used for OSS. The new field, runtime->buffer_accessing, keeps the
number of concurrent read/write operations. Unlike the former
buffer_mutex protection, this protects only around the
copy_from/to_user() calls; the other codes are basically protected by
the PCM stream lock. The refcount can be a negative, meaning blocked
by the ioctls. If a negative value is seen, the read/write aborts
with -EBUSY. In the ioctl side, OTOH, they check this refcount, too,
and set to a negative value for blocking unless it's already being
accessed. |
In the Linux kernel, the following vulnerability has been resolved:
cifs: prevent bad output lengths in smb2_ioctl_query_info()
When calling smb2_ioctl_query_info() with
smb_query_info::flags=PASSTHRU_FSCTL and
smb_query_info::output_buffer_length=0, the following would return
0x10
buffer = memdup_user(arg + sizeof(struct smb_query_info),
qi.output_buffer_length);
if (IS_ERR(buffer)) {
kfree(vars);
return PTR_ERR(buffer);
}
rather than a valid pointer thus making IS_ERR() check fail. This
would then cause a NULL ptr deference in @buffer when accessing it
later in smb2_ioctl_query_ioctl(). While at it, prevent having a
@buffer smaller than 8 bytes to correctly handle SMB2_SET_INFO
FileEndOfFileInformation requests when
smb_query_info::flags=PASSTHRU_SET_INFO.
Here is a small C reproducer which triggers a NULL ptr in @buffer when
passing an invalid smb_query_info::flags
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#define die(s) perror(s), exit(1)
#define QUERY_INFO 0xc018cf07
int main(int argc, char *argv[])
{
int fd;
if (argc < 2)
exit(1);
fd = open(argv[1], O_RDONLY);
if (fd == -1)
die("open");
if (ioctl(fd, QUERY_INFO, (uint32_t[]) { 0, 0, 0, 4, 0, 0}) == -1)
die("ioctl");
close(fd);
return 0;
}
mount.cifs //srv/share /mnt -o ...
gcc repro.c && ./a.out /mnt/f0
[ 114.138620] general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN NOPTI
[ 114.139310] KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
[ 114.139775] CPU: 2 PID: 995 Comm: a.out Not tainted 5.17.0-rc8 #1
[ 114.140148] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.15.0-0-g2dd4b9b-rebuilt.opensuse.org 04/01/2014
[ 114.140818] RIP: 0010:smb2_ioctl_query_info+0x206/0x410 [cifs]
[ 114.141221] Code: 00 00 00 00 fc ff df 48 c1 ea 03 80 3c 02 00 0f 85 c8 01 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8b 7b 28 4c 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 9c 01 00 00 49 8b 3f e8 58 02 fb ff 48 8b 14 24
[ 114.142348] RSP: 0018:ffffc90000b47b00 EFLAGS: 00010256
[ 114.142692] RAX: dffffc0000000000 RBX: ffff888115503200 RCX: ffffffffa020580d
[ 114.143119] RDX: 0000000000000000 RSI: 0000000000000004 RDI: ffffffffa043a380
[ 114.143544] RBP: ffff888115503278 R08: 0000000000000001 R09: 0000000000000003
[ 114.143983] R10: fffffbfff4087470 R11: 0000000000000001 R12: ffff888115503288
[ 114.144424] R13: 00000000ffffffea R14: ffff888115503228 R15: 0000000000000000
[ 114.144852] FS: 00007f7aeabdf740(0000) GS:ffff888151600000(0000) knlGS:0000000000000000
[ 114.145338] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 114.145692] CR2: 00007f7aeacfdf5e CR3: 000000012000e000 CR4: 0000000000350ee0
[ 114.146131] Call Trace:
[ 114.146291] <TASK>
[ 114.146432] ? smb2_query_reparse_tag+0x890/0x890 [cifs]
[ 114.146800] ? cifs_mapchar+0x460/0x460 [cifs]
[ 114.147121] ? rcu_read_lock_sched_held+0x3f/0x70
[ 114.147412] ? cifs_strndup_to_utf16+0x15b/0x250 [cifs]
[ 114.147775] ? dentry_path_raw+0xa6/0xf0
[ 114.148024] ? cifs_convert_path_to_utf16+0x198/0x220 [cifs]
[ 114.148413] ? smb2_check_message+0x1080/0x1080 [cifs]
[ 114.148766] ? rcu_read_lock_sched_held+0x3f/0x70
[ 114.149065] cifs_ioctl+0x1577/0x3320 [cifs]
[ 114.149371] ? lock_downgrade+0x6f0/0x6f0
[ 114.149631] ? cifs_readdir+0x2e60/0x2e60 [cifs]
[ 114.149956] ? rcu_read_lock_sched_held+0x3f/0x70
[ 114.150250] ? __rseq_handle_notify_resume+0x80b/0xbe0
[ 114.150562] ? __up_read+0x192/0x710
[ 114.150791] ? __ia32_sys_rseq+0xf0/0xf0
[ 114.151025] ? __x64_sys_openat+0x11f/0x1d0
[ 114.151296] __x64_sys_ioctl+0x127/0x190
[ 114.151549] do_syscall_64+0x3b/0x90
[ 114.151768] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 114.152079] RIP: 0033:0x7f7aead043df
[ 114.152306] Code: 00 48 89 44 24 18 31 c0 48 8d 44 24 60 c7 04 24
---truncated--- |