CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix off by one issue in alloc_flex_gd()
Wesley reported an issue:
==================================================================
EXT4-fs (dm-5): resizing filesystem from 7168 to 786432 blocks
------------[ cut here ]------------
kernel BUG at fs/ext4/resize.c:324!
CPU: 9 UID: 0 PID: 3576 Comm: resize2fs Not tainted 6.11.0+ #27
RIP: 0010:ext4_resize_fs+0x1212/0x12d0
Call Trace:
__ext4_ioctl+0x4e0/0x1800
ext4_ioctl+0x12/0x20
__x64_sys_ioctl+0x99/0xd0
x64_sys_call+0x1206/0x20d0
do_syscall_64+0x72/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
==================================================================
While reviewing the patch, Honza found that when adjusting resize_bg in
alloc_flex_gd(), it was possible for flex_gd->resize_bg to be bigger than
flexbg_size.
The reproduction of the problem requires the following:
o_group = flexbg_size * 2 * n;
o_size = (o_group + 1) * group_size;
n_group: [o_group + flexbg_size, o_group + flexbg_size * 2)
o_size = (n_group + 1) * group_size;
Take n=0,flexbg_size=16 as an example:
last:15
|o---------------|--------------n-|
o_group:0 resize to n_group:30
The corresponding reproducer is:
img=test.img
rm -f $img
truncate -s 600M $img
mkfs.ext4 -F $img -b 1024 -G 16 8M
dev=`losetup -f --show $img`
mkdir -p /tmp/test
mount $dev /tmp/test
resize2fs $dev 248M
Delete the problematic plus 1 to fix the issue, and add a WARN_ON_ONCE()
to prevent the issue from happening again.
[ Note: another reproucer which this commit fixes is:
img=test.img
rm -f $img
truncate -s 25MiB $img
mkfs.ext4 -b 4096 -E nodiscard,lazy_itable_init=0,lazy_journal_init=0 $img
truncate -s 3GiB $img
dev=`losetup -f --show $img`
mkdir -p /tmp/test
mount $dev /tmp/test
resize2fs $dev 3G
umount $dev
losetup -d $dev
-- TYT ] |
In the Linux kernel, the following vulnerability has been resolved:
powercap: intel_rapl: Fix off by one in get_rpi()
The rp->priv->rpi array is either rpi_msr or rpi_tpmi which have
NR_RAPL_PRIMITIVES number of elements. Thus the > needs to be >=
to prevent an off by one access. |
In the Linux kernel, the following vulnerability has been resolved:
padata: use integer wrap around to prevent deadlock on seq_nr overflow
When submitting more than 2^32 padata objects to padata_do_serial, the
current sorting implementation incorrectly sorts padata objects with
overflowed seq_nr, causing them to be placed before existing objects in
the reorder list. This leads to a deadlock in the serialization process
as padata_find_next cannot match padata->seq_nr and pd->processed
because the padata instance with overflowed seq_nr will be selected
next.
To fix this, we use an unsigned integer wrap around to correctly sort
padata objects in scenarios with integer overflow. |
In the Linux kernel, the following vulnerability has been resolved:
iommufd: Protect against overflow of ALIGN() during iova allocation
Userspace can supply an iova and uptr such that the target iova alignment
becomes really big and ALIGN() overflows which corrupts the selected area
range during allocation. CONFIG_IOMMUFD_TEST can detect this:
WARNING: CPU: 1 PID: 5092 at drivers/iommu/iommufd/io_pagetable.c:268 iopt_alloc_area_pages drivers/iommu/iommufd/io_pagetable.c:268 [inline]
WARNING: CPU: 1 PID: 5092 at drivers/iommu/iommufd/io_pagetable.c:268 iopt_map_pages+0xf95/0x1050 drivers/iommu/iommufd/io_pagetable.c:352
Modules linked in:
CPU: 1 PID: 5092 Comm: syz-executor294 Not tainted 6.10.0-rc5-syzkaller-00294-g3ffea9a7a6f7 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 06/07/2024
RIP: 0010:iopt_alloc_area_pages drivers/iommu/iommufd/io_pagetable.c:268 [inline]
RIP: 0010:iopt_map_pages+0xf95/0x1050 drivers/iommu/iommufd/io_pagetable.c:352
Code: fc e9 a4 f3 ff ff e8 1a 8b 4c fc 41 be e4 ff ff ff e9 8a f3 ff ff e8 0a 8b 4c fc 90 0f 0b 90 e9 37 f5 ff ff e8 fc 8a 4c fc 90 <0f> 0b 90 e9 68 f3 ff ff 48 c7 c1 ec 82 ad 8f 80 e1 07 80 c1 03 38
RSP: 0018:ffffc90003ebf9e0 EFLAGS: 00010293
RAX: ffffffff85499fa4 RBX: 00000000ffffffef RCX: ffff888079b49e00
RDX: 0000000000000000 RSI: 00000000ffffffef RDI: 0000000000000000
RBP: ffffc90003ebfc50 R08: ffffffff85499b30 R09: ffffffff85499942
R10: 0000000000000002 R11: ffff888079b49e00 R12: ffff8880228e0010
R13: 0000000000000000 R14: 1ffff920007d7f68 R15: ffffc90003ebfd00
FS: 000055557d760380(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000005fdeb8 CR3: 000000007404a000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
iommufd_ioas_copy+0x610/0x7b0 drivers/iommu/iommufd/ioas.c:274
iommufd_fops_ioctl+0x4d9/0x5a0 drivers/iommu/iommufd/main.c:421
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Cap the automatic alignment to the huge page size, which is probably a
better idea overall. Huge automatic alignments can fragment and chew up
the available IOVA space without any reason. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fail verification for sign-extension of packet data/data_end/data_meta
syzbot reported a kernel crash due to
commit 1f1e864b6555 ("bpf: Handle sign-extenstin ctx member accesses").
The reason is due to sign-extension of 32-bit load for
packet data/data_end/data_meta uapi field.
The original code looks like:
r2 = *(s32 *)(r1 + 76) /* load __sk_buff->data */
r3 = *(u32 *)(r1 + 80) /* load __sk_buff->data_end */
r0 = r2
r0 += 8
if r3 > r0 goto +1
...
Note that __sk_buff->data load has 32-bit sign extension.
After verification and convert_ctx_accesses(), the final asm code looks like:
r2 = *(u64 *)(r1 +208)
r2 = (s32)r2
r3 = *(u64 *)(r1 +80)
r0 = r2
r0 += 8
if r3 > r0 goto pc+1
...
Note that 'r2 = (s32)r2' may make the kernel __sk_buff->data address invalid
which may cause runtime failure.
Currently, in C code, typically we have
void *data = (void *)(long)skb->data;
void *data_end = (void *)(long)skb->data_end;
...
and it will generate
r2 = *(u64 *)(r1 +208)
r3 = *(u64 *)(r1 +80)
r0 = r2
r0 += 8
if r3 > r0 goto pc+1
If we allow sign-extension,
void *data = (void *)(long)(int)skb->data;
void *data_end = (void *)(long)skb->data_end;
...
the generated code looks like
r2 = *(u64 *)(r1 +208)
r2 <<= 32
r2 s>>= 32
r3 = *(u64 *)(r1 +80)
r0 = r2
r0 += 8
if r3 > r0 goto pc+1
and this will cause verification failure since "r2 <<= 32" is not allowed
as "r2" is a packet pointer.
To fix this issue for case
r2 = *(s32 *)(r1 + 76) /* load __sk_buff->data */
this patch added additional checking in is_valid_access() callback
function for packet data/data_end/data_meta access. If those accesses
are with sign-extenstion, the verification will fail.
[1] https://lore.kernel.org/bpf/000000000000c90eee061d236d37@google.com/ |
In the Linux kernel, the following vulnerability has been resolved:
ep93xx: clock: Fix off by one in ep93xx_div_recalc_rate()
The psc->div[] array has psc->num_div elements. These values come from
when we call clk_hw_register_div(). It's adc_divisors and
ARRAY_SIZE(adc_divisors)) and so on. So this condition needs to be >=
instead of > to prevent an out of bounds read. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: sd: Fix off-by-one error in sd_read_block_characteristics()
Ff the device returns page 0xb1 with length 8 (happens with qemu v2.x, for
example), sd_read_block_characteristics() may attempt an out-of-bounds
memory access when accessing the zoned field at offset 8. |
In the Linux kernel, the following vulnerability has been resolved:
sched: sch_cake: fix bulk flow accounting logic for host fairness
In sch_cake, we keep track of the count of active bulk flows per host,
when running in dst/src host fairness mode, which is used as the
round-robin weight when iterating through flows. The count of active
bulk flows is updated whenever a flow changes state.
This has a peculiar interaction with the hash collision handling: when a
hash collision occurs (after the set-associative hashing), the state of
the hash bucket is simply updated to match the new packet that collided,
and if host fairness is enabled, that also means assigning new per-host
state to the flow. For this reason, the bulk flow counters of the
host(s) assigned to the flow are decremented, before new state is
assigned (and the counters, which may not belong to the same host
anymore, are incremented again).
Back when this code was introduced, the host fairness mode was always
enabled, so the decrement was unconditional. When the configuration
flags were introduced the *increment* was made conditional, but
the *decrement* was not. Which of course can lead to a spurious
decrement (and associated wrap-around to U16_MAX).
AFAICT, when host fairness is disabled, the decrement and wrap-around
happens as soon as a hash collision occurs (which is not that common in
itself, due to the set-associative hashing). However, in most cases this
is harmless, as the value is only used when host fairness mode is
enabled. So in order to trigger an array overflow, sch_cake has to first
be configured with host fairness disabled, and while running in this
mode, a hash collision has to occur to cause the overflow. Then, the
qdisc has to be reconfigured to enable host fairness, which leads to the
array out-of-bounds because the wrapped-around value is retained and
used as an array index. It seems that syzbot managed to trigger this,
which is quite impressive in its own right.
This patch fixes the issue by introducing the same conditional check on
decrement as is used on increment.
The original bug predates the upstreaming of cake, but the commit listed
in the Fixes tag touched that code, meaning that this patch won't apply
before that. |
In the Linux kernel, the following vulnerability has been resolved:
tcp_bpf: fix return value of tcp_bpf_sendmsg()
When we cork messages in psock->cork, the last message triggers the
flushing will result in sending a sk_msg larger than the current
message size. In this case, in tcp_bpf_send_verdict(), 'copied' becomes
negative at least in the following case:
468 case __SK_DROP:
469 default:
470 sk_msg_free_partial(sk, msg, tosend);
471 sk_msg_apply_bytes(psock, tosend);
472 *copied -= (tosend + delta); // <==== HERE
473 return -EACCES;
Therefore, it could lead to the following BUG with a proper value of
'copied' (thanks to syzbot). We should not use negative 'copied' as a
return value here.
------------[ cut here ]------------
kernel BUG at net/socket.c:733!
Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 UID: 0 PID: 3265 Comm: syz-executor510 Not tainted 6.11.0-rc3-syzkaller-00060-gd07b43284ab3 #0
Hardware name: linux,dummy-virt (DT)
pstate: 61400009 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
pc : sock_sendmsg_nosec net/socket.c:733 [inline]
pc : sock_sendmsg_nosec net/socket.c:728 [inline]
pc : __sock_sendmsg+0x5c/0x60 net/socket.c:745
lr : sock_sendmsg_nosec net/socket.c:730 [inline]
lr : __sock_sendmsg+0x54/0x60 net/socket.c:745
sp : ffff800088ea3b30
x29: ffff800088ea3b30 x28: fbf00000062bc900 x27: 0000000000000000
x26: ffff800088ea3bc0 x25: ffff800088ea3bc0 x24: 0000000000000000
x23: f9f00000048dc000 x22: 0000000000000000 x21: ffff800088ea3d90
x20: f9f00000048dc000 x19: ffff800088ea3d90 x18: 0000000000000001
x17: 0000000000000000 x16: 0000000000000000 x15: 000000002002ffaf
x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: ffff8000815849c0 x9 : ffff8000815b49c0
x8 : 0000000000000000 x7 : 000000000000003f x6 : 0000000000000000
x5 : 00000000000007e0 x4 : fff07ffffd239000 x3 : fbf00000062bc900
x2 : 0000000000000000 x1 : 0000000000000000 x0 : 00000000fffffdef
Call trace:
sock_sendmsg_nosec net/socket.c:733 [inline]
__sock_sendmsg+0x5c/0x60 net/socket.c:745
____sys_sendmsg+0x274/0x2ac net/socket.c:2597
___sys_sendmsg+0xac/0x100 net/socket.c:2651
__sys_sendmsg+0x84/0xe0 net/socket.c:2680
__do_sys_sendmsg net/socket.c:2689 [inline]
__se_sys_sendmsg net/socket.c:2687 [inline]
__arm64_sys_sendmsg+0x24/0x30 net/socket.c:2687
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x48/0x110 arch/arm64/kernel/syscall.c:49
el0_svc_common.constprop.0+0x40/0xe0 arch/arm64/kernel/syscall.c:132
do_el0_svc+0x1c/0x28 arch/arm64/kernel/syscall.c:151
el0_svc+0x34/0xec arch/arm64/kernel/entry-common.c:712
el0t_64_sync_handler+0x100/0x12c arch/arm64/kernel/entry-common.c:730
el0t_64_sync+0x19c/0x1a0 arch/arm64/kernel/entry.S:598
Code: f9404463 d63f0060 3108441f 54fffe81 (d4210000)
---[ end trace 0000000000000000 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (adc128d818) Fix underflows seen when writing limit attributes
DIV_ROUND_CLOSEST() after kstrtol() results in an underflow if a large
negative number such as -9223372036854775808 is provided by the user.
Fix it by reordering clamp_val() and DIV_ROUND_CLOSEST() operations. |
In the Linux kernel, the following vulnerability has been resolved:
workqueue: Fix UBSAN 'subtraction overflow' error in shift_and_mask()
UBSAN reports the following 'subtraction overflow' error when booting
in a virtual machine on Android:
| Internal error: UBSAN: integer subtraction overflow: 00000000f2005515 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.10.0-00006-g3cbe9e5abd46-dirty #4
| Hardware name: linux,dummy-virt (DT)
| pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : cancel_delayed_work+0x34/0x44
| lr : cancel_delayed_work+0x2c/0x44
| sp : ffff80008002ba60
| x29: ffff80008002ba60 x28: 0000000000000000 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: 0000000000000000 x22: 0000000000000000 x21: ffff1f65014cd3c0
| x20: ffffc0e84c9d0da0 x19: ffffc0e84cab3558 x18: ffff800080009058
| x17: 00000000247ee1f8 x16: 00000000247ee1f8 x15: 00000000bdcb279d
| x14: 0000000000000001 x13: 0000000000000075 x12: 00000a0000000000
| x11: ffff1f6501499018 x10: 00984901651fffff x9 : ffff5e7cc35af000
| x8 : 0000000000000001 x7 : 3d4d455453595342 x6 : 000000004e514553
| x5 : ffff1f6501499265 x4 : ffff1f650ff60b10 x3 : 0000000000000620
| x2 : ffff80008002ba78 x1 : 0000000000000000 x0 : 0000000000000000
| Call trace:
| cancel_delayed_work+0x34/0x44
| deferred_probe_extend_timeout+0x20/0x70
| driver_register+0xa8/0x110
| __platform_driver_register+0x28/0x3c
| syscon_init+0x24/0x38
| do_one_initcall+0xe4/0x338
| do_initcall_level+0xac/0x178
| do_initcalls+0x5c/0xa0
| do_basic_setup+0x20/0x30
| kernel_init_freeable+0x8c/0xf8
| kernel_init+0x28/0x1b4
| ret_from_fork+0x10/0x20
| Code: f9000fbf 97fffa2f 39400268 37100048 (d42aa2a0)
| ---[ end trace 0000000000000000 ]---
| Kernel panic - not syncing: UBSAN: integer subtraction overflow: Fatal exception
This is due to shift_and_mask() using a signed immediate to construct
the mask and being called with a shift of 31 (WORK_OFFQ_POOL_SHIFT) so
that it ends up decrementing from INT_MIN.
Use an unsigned constant '1U' to generate the mask in shift_and_mask(). |
In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix overflow in get_free_elt()
"tracing_map->next_elt" in get_free_elt() is at risk of overflowing.
Once it overflows, new elements can still be inserted into the tracing_map
even though the maximum number of elements (`max_elts`) has been reached.
Continuing to insert elements after the overflow could result in the
tracing_map containing "tracing_map->max_size" elements, leaving no empty
entries.
If any attempt is made to insert an element into a full tracing_map using
`__tracing_map_insert()`, it will cause an infinite loop with preemption
disabled, leading to a CPU hang problem.
Fix this by preventing any further increments to "tracing_map->next_elt"
once it reaches "tracing_map->max_elt". |
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (ltc2991) re-order conditions to fix off by one bug
LTC2991_T_INT_CH_NR is 4. The st->temp_en[] array has LTC2991_MAX_CHANNEL
(4) elements. Thus if "channel" is equal to LTC2991_T_INT_CH_NR then we
have read one element beyond the end of the array. Flip the conditions
around so that we check if "channel" is valid before using it as an array
index. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix infinite loop when replaying fast_commit
When doing fast_commit replay an infinite loop may occur due to an
uninitialized extent_status struct. ext4_ext_determine_insert_hole() does
not detect the replay and calls ext4_es_find_extent_range(), which will
return immediately without initializing the 'es' variable.
Because 'es' contains garbage, an integer overflow may happen causing an
infinite loop in this function, easily reproducible using fstest generic/039.
This commit fixes this issue by unconditionally initializing the structure
in function ext4_es_find_extent_range().
Thanks to Zhang Yi, for figuring out the real problem! |
In the Linux kernel, the following vulnerability has been resolved:
wireguard: allowedips: avoid unaligned 64-bit memory accesses
On the parisc platform, the kernel issues kernel warnings because
swap_endian() tries to load a 128-bit IPv6 address from an unaligned
memory location:
Kernel: unaligned access to 0x55f4688c in wg_allowedips_insert_v6+0x2c/0x80 [wireguard] (iir 0xf3010df)
Kernel: unaligned access to 0x55f46884 in wg_allowedips_insert_v6+0x38/0x80 [wireguard] (iir 0xf2010dc)
Avoid such unaligned memory accesses by instead using the
get_unaligned_be64() helper macro.
[Jason: replace src[8] in original patch with src+8] |
In the Linux kernel, the following vulnerability has been resolved:
mm: avoid overflows in dirty throttling logic
The dirty throttling logic is interspersed with assumptions that dirty
limits in PAGE_SIZE units fit into 32-bit (so that various multiplications
fit into 64-bits). If limits end up being larger, we will hit overflows,
possible divisions by 0 etc. Fix these problems by never allowing so
large dirty limits as they have dubious practical value anyway. For
dirty_bytes / dirty_background_bytes interfaces we can just refuse to set
so large limits. For dirty_ratio / dirty_background_ratio it isn't so
simple as the dirty limit is computed from the amount of available memory
which can change due to memory hotplug etc. So when converting dirty
limits from ratios to numbers of pages, we just don't allow the result to
exceed UINT_MAX.
This is root-only triggerable problem which occurs when the operator
sets dirty limits to >16 TB. |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix potential integer overflow in page size calculation
Explicitly cast tbo->page_alignment to u64 before bit-shifting to
prevent overflow when assigning to min_page_size. |
In the Linux kernel, the following vulnerability has been resolved:
block/ioctl: prefer different overflow check
Running syzkaller with the newly reintroduced signed integer overflow
sanitizer shows this report:
[ 62.982337] ------------[ cut here ]------------
[ 62.985692] cgroup: Invalid name
[ 62.986211] UBSAN: signed-integer-overflow in ../block/ioctl.c:36:46
[ 62.989370] 9pnet_fd: p9_fd_create_tcp (7343): problem connecting socket to 127.0.0.1
[ 62.992992] 9223372036854775807 + 4095 cannot be represented in type 'long long'
[ 62.997827] 9pnet_fd: p9_fd_create_tcp (7345): problem connecting socket to 127.0.0.1
[ 62.999369] random: crng reseeded on system resumption
[ 63.000634] GUP no longer grows the stack in syz-executor.2 (7353): 20002000-20003000 (20001000)
[ 63.000668] CPU: 0 PID: 7353 Comm: syz-executor.2 Not tainted 6.8.0-rc2-00035-gb3ef86b5a957 #1
[ 63.000677] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 63.000682] Call Trace:
[ 63.000686] <TASK>
[ 63.000731] dump_stack_lvl+0x93/0xd0
[ 63.000919] __get_user_pages+0x903/0xd30
[ 63.001030] __gup_longterm_locked+0x153e/0x1ba0
[ 63.001041] ? _raw_read_unlock_irqrestore+0x17/0x50
[ 63.001072] ? try_get_folio+0x29c/0x2d0
[ 63.001083] internal_get_user_pages_fast+0x1119/0x1530
[ 63.001109] iov_iter_extract_pages+0x23b/0x580
[ 63.001206] bio_iov_iter_get_pages+0x4de/0x1220
[ 63.001235] iomap_dio_bio_iter+0x9b6/0x1410
[ 63.001297] __iomap_dio_rw+0xab4/0x1810
[ 63.001316] iomap_dio_rw+0x45/0xa0
[ 63.001328] ext4_file_write_iter+0xdde/0x1390
[ 63.001372] vfs_write+0x599/0xbd0
[ 63.001394] ksys_write+0xc8/0x190
[ 63.001403] do_syscall_64+0xd4/0x1b0
[ 63.001421] ? arch_exit_to_user_mode_prepare+0x3a/0x60
[ 63.001479] entry_SYSCALL_64_after_hwframe+0x6f/0x77
[ 63.001535] RIP: 0033:0x7f7fd3ebf539
[ 63.001551] Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 f1 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
[ 63.001562] RSP: 002b:00007f7fd32570c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 63.001584] RAX: ffffffffffffffda RBX: 00007f7fd3ff3f80 RCX: 00007f7fd3ebf539
[ 63.001590] RDX: 4db6d1e4f7e43360 RSI: 0000000020000000 RDI: 0000000000000004
[ 63.001595] RBP: 00007f7fd3f1e496 R08: 0000000000000000 R09: 0000000000000000
[ 63.001599] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[ 63.001604] R13: 0000000000000006 R14: 00007f7fd3ff3f80 R15: 00007ffd415ad2b8
...
[ 63.018142] ---[ end trace ]---
Historically, the signed integer overflow sanitizer did not work in the
kernel due to its interaction with `-fwrapv` but this has since been
changed [1] in the newest version of Clang; It was re-enabled in the
kernel with Commit 557f8c582a9ba8ab ("ubsan: Reintroduce signed overflow
sanitizer").
Let's rework this overflow checking logic to not actually perform an
overflow during the check itself, thus avoiding the UBSAN splat.
[1]: https://github.com/llvm/llvm-project/pull/82432 |
In the Linux kernel, the following vulnerability has been resolved:
ptp: fix integer overflow in max_vclocks_store
On 32bit systems, the "4 * max" multiply can overflow. Use kcalloc()
to do the allocation to prevent this. |
In the Linux kernel, the following vulnerability has been resolved:
s390/ap: Fix crash in AP internal function modify_bitmap()
A system crash like this
Failing address: 200000cb7df6f000 TEID: 200000cb7df6f403
Fault in home space mode while using kernel ASCE.
AS:00000002d71bc007 R3:00000003fe5b8007 S:000000011a446000 P:000000015660c13d
Oops: 0038 ilc:3 [#1] PREEMPT SMP
Modules linked in: mlx5_ib ...
CPU: 8 PID: 7556 Comm: bash Not tainted 6.9.0-rc7 #8
Hardware name: IBM 3931 A01 704 (LPAR)
Krnl PSW : 0704e00180000000 0000014b75e7b606 (ap_parse_bitmap_str+0x10e/0x1f8)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
Krnl GPRS: 0000000000000001 ffffffffffffffc0 0000000000000001 00000048f96b75d3
000000cb00000100 ffffffffffffffff ffffffffffffffff 000000cb7df6fce0
000000cb7df6fce0 00000000ffffffff 000000000000002b 00000048ffffffff
000003ff9b2dbc80 200000cb7df6fcd8 0000014bffffffc0 000000cb7df6fbc8
Krnl Code: 0000014b75e7b5fc: a7840047 brc 8,0000014b75e7b68a
0000014b75e7b600: 18b2 lr %r11,%r2
#0000014b75e7b602: a7f4000a brc 15,0000014b75e7b616
>0000014b75e7b606: eb22d00000e6 laog %r2,%r2,0(%r13)
0000014b75e7b60c: a7680001 lhi %r6,1
0000014b75e7b610: 187b lr %r7,%r11
0000014b75e7b612: 84960021 brxh %r9,%r6,0000014b75e7b654
0000014b75e7b616: 18e9 lr %r14,%r9
Call Trace:
[<0000014b75e7b606>] ap_parse_bitmap_str+0x10e/0x1f8
([<0000014b75e7b5dc>] ap_parse_bitmap_str+0xe4/0x1f8)
[<0000014b75e7b758>] apmask_store+0x68/0x140
[<0000014b75679196>] kernfs_fop_write_iter+0x14e/0x1e8
[<0000014b75598524>] vfs_write+0x1b4/0x448
[<0000014b7559894c>] ksys_write+0x74/0x100
[<0000014b7618a440>] __do_syscall+0x268/0x328
[<0000014b761a3558>] system_call+0x70/0x98
INFO: lockdep is turned off.
Last Breaking-Event-Address:
[<0000014b75e7b636>] ap_parse_bitmap_str+0x13e/0x1f8
Kernel panic - not syncing: Fatal exception: panic_on_oops
occured when /sys/bus/ap/a[pq]mask was updated with a relative mask value
(like +0x10-0x12,+60,-90) with one of the numeric values exceeding INT_MAX.
The fix is simple: use unsigned long values for the internal variables. The
correct checks are already in place in the function but a simple int for
the internal variables was used with the possibility to overflow. |