CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Windows Win32 Kernel Subsystem Elevation of Privilege Vulnerability |
Windows Standards-Based Storage Management Service Remote Code Execution Vulnerability |
Win32k Elevation of Privilege Vulnerability |
Microsoft Message Queuing (MSMQ) Remote Code Execution Vulnerability |
Use After Free vulnerability exists in the CATPRODUCT file reading procedure in SOLIDWORKS eDrawings on Release SOLIDWORKS Desktop 2025. This vulnerability could allow an attacker to execute arbitrary code while opening a specially crafted CATPRODUCT file. |
Use After Free vulnerability exists in the IPT file reading procedure in SOLIDWORKS eDrawings on Release SOLIDWORKS Desktop 2025. This vulnerability could allow an attacker to execute arbitrary code while opening a specially crafted IPT file. |
Use After Free vulnerability exists in the CATPRODUCT file reading procedure in SOLIDWORKS eDrawings on Release SOLIDWORKS Desktop 2025. This vulnerability could allow an attacker to execute arbitrary code while opening a specially crafted CATPRODUCT file. |
Use After Free vulnerability exists in the JT file reading procedure in SOLIDWORKS eDrawings on Release SOLIDWORKS Desktop 2025. This vulnerability could allow an attacker to execute arbitrary code while opening a specially crafted JT file. |
A Use After Free vulnerability in the routing protocol daemon (rpd) of Juniper Networks Junos OS and Juniper Networks Junos OS Evolved allows an attacker sending a BGP update with a specifically malformed AS PATH to cause rpd to crash, resulting in a Denial of Service (DoS). Continuous receipt of the malformed AS PATH attribute will cause a sustained DoS condition.
On all Junos OS and Junos OS Evolved platforms, the rpd process will crash and restart when a specifically malformed AS PATH is received within a BGP update and traceoptions are enabled.
This issue only affects systems with BGP traceoptions enabled and requires a BGP session to be already established. Systems without BGP traceoptions enabled are not impacted by this issue.
This issue affects:
Junos OS:
* All versions before 21.2R3-S9,
* all versions of 21.4,
* from 22.2 before 22.2R3-S6,
* from 22.4 before 22.4R3-S5,
* from 23.2 before 23.2R2-S3,
* from 23.4 before 23.4R2-S4,
* from 24.2 before 24.2R2;
Junos OS Evolved:
* All versions before 22.4R3-S5-EVO,
* from 23.2-EVO before 23.2R2-S3-EVO,
* from 23.4-EVO before 23.4R2-S4-EVO,
* from 24.2-EVO before 24.2R2-EVO.
This is a more complete fix for previously published CVE-2024-39549 (JSA83011). |
In the Linux kernel, the following vulnerability has been resolved:
loop: Fix use-after-free issues
do_req_filebacked() calls blk_mq_complete_request() synchronously or
asynchronously when using asynchronous I/O unless memory allocation fails.
Hence, modify loop_handle_cmd() such that it does not dereference 'cmd' nor
'rq' after do_req_filebacked() finished unless we are sure that the request
has not yet been completed. This patch fixes the following kernel crash:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000054
Call trace:
css_put.42938+0x1c/0x1ac
loop_process_work+0xc8c/0xfd4
loop_rootcg_workfn+0x24/0x34
process_one_work+0x244/0x558
worker_thread+0x400/0x8fc
kthread+0x16c/0x1e0
ret_from_fork+0x10/0x20 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix read pointer after free in ath12k_mac_assign_vif_to_vdev()
In ath12k_mac_assign_vif_to_vdev(), if arvif is created on a different
radio, it gets deleted from that radio through a call to
ath12k_mac_unassign_link_vif(). This action frees the arvif pointer.
Subsequently, there is a check involving arvif, which will result in a
read-after-free scenario.
Fix this by moving this check after arvif is again assigned via call to
ath12k_mac_assign_link_vif().
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
block: RCU protect disk->conv_zones_bitmap
Ensure that a disk revalidation changing the conventional zones bitmap
of a disk does not cause invalid memory references when using the
disk_zone_is_conv() helper by RCU protecting the disk->conv_zones_bitmap
pointer.
disk_zone_is_conv() is modified to operate under the RCU read lock and
the function disk_set_conv_zones_bitmap() is added to update a disk
conv_zones_bitmap pointer using rcu_replace_pointer() with the disk
zone_wplugs_lock spinlock held.
disk_free_zone_resources() is modified to call
disk_update_zone_resources() with a NULL bitmap pointer to free the disk
conv_zones_bitmap. disk_set_conv_zones_bitmap() is also used in
disk_update_zone_resources() to set the new (revalidated) bitmap and
free the old one. |
In the Linux kernel, the following vulnerability has been resolved:
s390/cpum_sf: Handle CPU hotplug remove during sampling
CPU hotplug remove handling triggers the following function
call sequence:
CPUHP_AP_PERF_S390_SF_ONLINE --> s390_pmu_sf_offline_cpu()
...
CPUHP_AP_PERF_ONLINE --> perf_event_exit_cpu()
The s390 CPUMF sampling CPU hotplug handler invokes:
s390_pmu_sf_offline_cpu()
+--> cpusf_pmu_setup()
+--> setup_pmc_cpu()
+--> deallocate_buffers()
This function de-allocates all sampling data buffers (SDBs) allocated
for that CPU at event initialization. It also clears the
PMU_F_RESERVED bit. The CPU is gone and can not be sampled.
With the event still being active on the removed CPU, the CPU event
hotplug support in kernel performance subsystem triggers the
following function calls on the removed CPU:
perf_event_exit_cpu()
+--> perf_event_exit_cpu_context()
+--> __perf_event_exit_context()
+--> __perf_remove_from_context()
+--> event_sched_out()
+--> cpumsf_pmu_del()
+--> cpumsf_pmu_stop()
+--> hw_perf_event_update()
to stop and remove the event. During removal of the event, the
sampling device driver tries to read out the remaining samples from
the sample data buffers (SDBs). But they have already been freed
(and may have been re-assigned). This may lead to a use after free
situation in which case the samples are most likely invalid. In the
best case the memory has not been reassigned and still contains
valid data.
Remedy this situation and check if the CPU is still in reserved
state (bit PMU_F_RESERVED set). In this case the SDBs have not been
released an contain valid data. This is always the case when
the event is removed (and no CPU hotplug off occured).
If the PMU_F_RESERVED bit is not set, the SDB buffers are gone. |
Memory corruption caused by missing locks and checks on the DMA fence and improper synchronization. |
@fastly/js-compute is a JavaScript SDK and runtime for building Fastly Compute applications. The implementation of several functions were determined to include a use-after-free bug. This bug could allow for unintended data loss if the result of the preceding functions were sent anywhere else, and often results in a guest trap causing services to return a 500. This bug has been fixed in version 3.16.0 of the `@fastly/js-compute` package. |
In the Linux kernel, the following vulnerability has been resolved:
net: bridge: mst: fix suspicious rcu usage in br_mst_set_state
I converted br_mst_set_state to RCU to avoid a vlan use-after-free
but forgot to change the vlan group dereference helper. Switch to vlan
group RCU deref helper to fix the suspicious rcu usage warning. |
NVIDIA GPU display driver for Windows and Linux contains a vulnerability where referencing memory after it has been freed can lead to denial of service or data tampering. |
Memory corruption while invoking IOCTL calls from the use-space for HGSL memory node. |
In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8712: fix use-after-free in rtl8712_dl_fw
Syzbot reported use-after-free in rtl8712_dl_fw(). The problem was in
race condition between r871xu_dev_remove() ->ndo_open() callback.
It's easy to see from crash log, that driver accesses released firmware
in ->ndo_open() callback. It may happen, since driver was releasing
firmware _before_ unregistering netdev. Fix it by moving
unregister_netdev() before cleaning up resources.
Call Trace:
...
rtl871x_open_fw drivers/staging/rtl8712/hal_init.c:83 [inline]
rtl8712_dl_fw+0xd95/0xe10 drivers/staging/rtl8712/hal_init.c:170
rtl8712_hal_init drivers/staging/rtl8712/hal_init.c:330 [inline]
rtl871x_hal_init+0xae/0x180 drivers/staging/rtl8712/hal_init.c:394
netdev_open+0xe6/0x6c0 drivers/staging/rtl8712/os_intfs.c:380
__dev_open+0x2bc/0x4d0 net/core/dev.c:1484
Freed by task 1306:
...
release_firmware+0x1b/0x30 drivers/base/firmware_loader/main.c:1053
r871xu_dev_remove+0xcc/0x2c0 drivers/staging/rtl8712/usb_intf.c:599
usb_unbind_interface+0x1d8/0x8d0 drivers/usb/core/driver.c:458 |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Set send and receive CQ before forwarding to the driver
Preset both receive and send CQ pointers prior to call to the drivers and
overwrite it later again till the mlx4 is going to be changed do not
overwrite ibqp properties.
This change is needed for mlx5, because in case of QP creation failure, it
will go to the path of QP destroy which relies on proper CQ pointers.
BUG: KASAN: use-after-free in create_qp.cold+0x164/0x16e [mlx5_ib]
Write of size 8 at addr ffff8880064c55c0 by task a.out/246
CPU: 0 PID: 246 Comm: a.out Not tainted 5.15.0+ #291
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack_lvl+0x45/0x59
print_address_description.constprop.0+0x1f/0x140
kasan_report.cold+0x83/0xdf
create_qp.cold+0x164/0x16e [mlx5_ib]
mlx5_ib_create_qp+0x358/0x28a0 [mlx5_ib]
create_qp.part.0+0x45b/0x6a0 [ib_core]
ib_create_qp_user+0x97/0x150 [ib_core]
ib_uverbs_handler_UVERBS_METHOD_QP_CREATE+0x92c/0x1250 [ib_uverbs]
ib_uverbs_cmd_verbs+0x1c38/0x3150 [ib_uverbs]
ib_uverbs_ioctl+0x169/0x260 [ib_uverbs]
__x64_sys_ioctl+0x866/0x14d0
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Allocated by task 246:
kasan_save_stack+0x1b/0x40
__kasan_kmalloc+0xa4/0xd0
create_qp.part.0+0x92/0x6a0 [ib_core]
ib_create_qp_user+0x97/0x150 [ib_core]
ib_uverbs_handler_UVERBS_METHOD_QP_CREATE+0x92c/0x1250 [ib_uverbs]
ib_uverbs_cmd_verbs+0x1c38/0x3150 [ib_uverbs]
ib_uverbs_ioctl+0x169/0x260 [ib_uverbs]
__x64_sys_ioctl+0x866/0x14d0
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Freed by task 246:
kasan_save_stack+0x1b/0x40
kasan_set_track+0x1c/0x30
kasan_set_free_info+0x20/0x30
__kasan_slab_free+0x10c/0x150
slab_free_freelist_hook+0xb4/0x1b0
kfree+0xe7/0x2a0
create_qp.part.0+0x52b/0x6a0 [ib_core]
ib_create_qp_user+0x97/0x150 [ib_core]
ib_uverbs_handler_UVERBS_METHOD_QP_CREATE+0x92c/0x1250 [ib_uverbs]
ib_uverbs_cmd_verbs+0x1c38/0x3150 [ib_uverbs]
ib_uverbs_ioctl+0x169/0x260 [ib_uverbs]
__x64_sys_ioctl+0x866/0x14d0
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae |