Search

Search Results (310622 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50371 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: led: qcom-lpg: Fix sleeping in atomic lpg_brighness_set() function can sleep, while led's brightness_set() callback must be non-blocking. Change LPG driver to use brightness_set_blocking() instead. BUG: sleeping function called from invalid context at kernel/locking/mutex.c:580 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 0, name: swapper/0 preempt_count: 101, expected: 0 INFO: lockdep is turned off. CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 6.1.0-rc1-00014-gbe99b089c6fc-dirty #85 Hardware name: Qualcomm Technologies, Inc. DB820c (DT) Call trace: dump_backtrace.part.0+0xe4/0xf0 show_stack+0x18/0x40 dump_stack_lvl+0x88/0xb4 dump_stack+0x18/0x34 __might_resched+0x170/0x254 __might_sleep+0x48/0x9c __mutex_lock+0x4c/0x400 mutex_lock_nested+0x2c/0x40 lpg_brightness_single_set+0x40/0x90 led_set_brightness_nosleep+0x34/0x60 led_heartbeat_function+0x80/0x170 call_timer_fn+0xb8/0x340 __run_timers.part.0+0x20c/0x254 run_timer_softirq+0x3c/0x7c _stext+0x14c/0x578 ____do_softirq+0x10/0x20 call_on_irq_stack+0x2c/0x5c do_softirq_own_stack+0x1c/0x30 __irq_exit_rcu+0x164/0x170 irq_exit_rcu+0x10/0x40 el1_interrupt+0x38/0x50 el1h_64_irq_handler+0x18/0x2c el1h_64_irq+0x64/0x68 cpuidle_enter_state+0xc8/0x380 cpuidle_enter+0x38/0x50 do_idle+0x244/0x2d0 cpu_startup_entry+0x24/0x30 rest_init+0x128/0x1a0 arch_post_acpi_subsys_init+0x0/0x18 start_kernel+0x6f4/0x734 __primary_switched+0xbc/0xc4
CVE-2023-53341 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: of/fdt: run soc memory setup when early_init_dt_scan_memory fails If memory has been found early_init_dt_scan_memory now returns 1. If it hasn't found any memory it will return 0, allowing other memory setup mechanisms to carry on. Previously early_init_dt_scan_memory always returned 0 without distinguishing between any kind of memory setup being done or not. Any code path after the early_init_dt_scan memory call in the ramips plat_mem_setup code wouldn't be executed anymore. Making early_init_dt_scan_memory the only way to initialize the memory. Some boards, including my mt7621 based Cudy X6 board, depend on memory initialization being done via the soc_info.mem_detect function pointer. Those wouldn't be able to obtain memory and panic the kernel during early bootup with the message "early_init_dt_alloc_memory_arch: Failed to allocate 12416 bytes align=0x40".
CVE-2023-53368 1 Linux 1 Linux Kernel 2025-09-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tracing: Fix race issue between cpu buffer write and swap Warning happened in rb_end_commit() at code: if (RB_WARN_ON(cpu_buffer, !local_read(&cpu_buffer->committing))) WARNING: CPU: 0 PID: 139 at kernel/trace/ring_buffer.c:3142 rb_commit+0x402/0x4a0 Call Trace: ring_buffer_unlock_commit+0x42/0x250 trace_buffer_unlock_commit_regs+0x3b/0x250 trace_event_buffer_commit+0xe5/0x440 trace_event_buffer_reserve+0x11c/0x150 trace_event_raw_event_sched_switch+0x23c/0x2c0 __traceiter_sched_switch+0x59/0x80 __schedule+0x72b/0x1580 schedule+0x92/0x120 worker_thread+0xa0/0x6f0 It is because the race between writing event into cpu buffer and swapping cpu buffer through file per_cpu/cpu0/snapshot: Write on CPU 0 Swap buffer by per_cpu/cpu0/snapshot on CPU 1 -------- -------- tracing_snapshot_write() [...] ring_buffer_lock_reserve() cpu_buffer = buffer->buffers[cpu]; // 1. Suppose find 'cpu_buffer_a'; [...] rb_reserve_next_event() [...] ring_buffer_swap_cpu() if (local_read(&cpu_buffer_a->committing)) goto out_dec; if (local_read(&cpu_buffer_b->committing)) goto out_dec; buffer_a->buffers[cpu] = cpu_buffer_b; buffer_b->buffers[cpu] = cpu_buffer_a; // 2. cpu_buffer has swapped here. rb_start_commit(cpu_buffer); if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { // 3. This check passed due to 'cpu_buffer->buffer' [...] // has not changed here. return NULL; } cpu_buffer_b->buffer = buffer_a; cpu_buffer_a->buffer = buffer_b; [...] // 4. Reserve event from 'cpu_buffer_a'. ring_buffer_unlock_commit() [...] cpu_buffer = buffer->buffers[cpu]; // 5. Now find 'cpu_buffer_b' !!! rb_commit(cpu_buffer) rb_end_commit() // 6. WARN for the wrong 'committing' state !!! Based on above analysis, we can easily reproduce by following testcase: ``` bash #!/bin/bash dmesg -n 7 sysctl -w kernel.panic_on_warn=1 TR=/sys/kernel/tracing echo 7 > ${TR}/buffer_size_kb echo "sched:sched_switch" > ${TR}/set_event while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & ``` To fix it, IIUC, we can use smp_call_function_single() to do the swap on the target cpu where the buffer is located, so that above race would be avoided.
CVE-2025-10614 1 Itsourcecode 1 E-logbook With Health Monitoring System For Covid-19 2025-09-18 4.3 Medium
A vulnerability was determined in itsourcecode E-Logbook with Health Monitoring System for COVID-19 1.0 on COVID. This affects an unknown function of the file /print_reports_prev.php. Executing manipulation of the argument profile_id can lead to cross site scripting. It is possible to launch the attack remotely. The exploit has been publicly disclosed and may be utilized.
CVE-2025-59414 1 Nuxt 1 Nuxt 2025-09-18 3.1 Low
Nuxt is an open-source web development framework for Vue.js. Prior to 3.19.0 and 4.1.0, A client-side path traversal vulnerability in Nuxt's Island payload revival mechanism allowed attackers to manipulate client-side requests to different endpoints within the same application domain when specific prerendering conditions are met. The vulnerability occurs in the client-side payload revival process (revive-payload.client.ts) where Nuxt Islands are automatically fetched when encountering serialized __nuxt_island objects. During prerendering, if an API endpoint returns user-controlled data containing a crafted __nuxt_island object, he data gets serialized with devalue.stringify and stored in the prerendered page. When a client navigates to the prerendered page, devalue.parse deserializes the payload. The Island reviver attempts to fetch /__nuxt_island/${key}.json where key could contain path traversal sequences. Update to Nuxt 3.19.0+ or 4.1.0+.
CVE-2022-50361 1 Linux 1 Linux Kernel 2025-09-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: wilc1000: add missing unregister_netdev() in wilc_netdev_ifc_init() Fault injection test reports this issue: kernel BUG at net/core/dev.c:10731! invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI Call Trace: <TASK> wilc_netdev_ifc_init+0x19f/0x220 [wilc1000 884bf126e9e98af6a708f266a8dffd53f99e4bf5] wilc_cfg80211_init+0x30c/0x380 [wilc1000 884bf126e9e98af6a708f266a8dffd53f99e4bf5] wilc_bus_probe+0xad/0x2b0 [wilc1000_spi 1520a7539b6589cc6cde2ae826a523a33f8bacff] spi_probe+0xe4/0x140 really_probe+0x17e/0x3f0 __driver_probe_device+0xe3/0x170 driver_probe_device+0x49/0x120 The root case here is alloc_ordered_workqueue() fails, but cfg80211_unregister_netdevice() or unregister_netdev() not be called in error handling path. To fix add unregister_netdev goto lable to add the unregister operation in error handling path.
CVE-2025-10599 1 Itsourcecode 1 Web-based Internet Laboratory Management System 2025-09-18 7.3 High
A security flaw has been discovered in itsourcecode Web-Based Internet Laboratory Management System 1.0. Impacted is the function User::AuthenticateUser of the file login.php. Performing manipulation of the argument user_email results in sql injection. Remote exploitation of the attack is possible. The exploit has been released to the public and may be exploited.
CVE-2022-50356 1 Linux 1 Linux Kernel 2025-09-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: sched: sfb: fix null pointer access issue when sfb_init() fails When the default qdisc is sfb, if the qdisc of dev_queue fails to be inited during mqprio_init(), sfb_reset() is invoked to clear resources. In this case, the q->qdisc is NULL, and it will cause gpf issue. The process is as follows: qdisc_create_dflt() sfb_init() tcf_block_get() --->failed, q->qdisc is NULL ... qdisc_put() ... sfb_reset() qdisc_reset(q->qdisc) --->q->qdisc is NULL ops = qdisc->ops The following is the Call Trace information: general protection fault, probably for non-canonical address 0xdffffc0000000003: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f] RIP: 0010:qdisc_reset+0x2b/0x6f0 Call Trace: <TASK> sfb_reset+0x37/0xd0 qdisc_reset+0xed/0x6f0 qdisc_destroy+0x82/0x4c0 qdisc_put+0x9e/0xb0 qdisc_create_dflt+0x2c3/0x4a0 mqprio_init+0xa71/0x1760 qdisc_create+0x3eb/0x1000 tc_modify_qdisc+0x408/0x1720 rtnetlink_rcv_msg+0x38e/0xac0 netlink_rcv_skb+0x12d/0x3a0 netlink_unicast+0x4a2/0x740 netlink_sendmsg+0x826/0xcc0 sock_sendmsg+0xc5/0x100 ____sys_sendmsg+0x583/0x690 ___sys_sendmsg+0xe8/0x160 __sys_sendmsg+0xbf/0x160 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f2164122d04 </TASK>
CVE-2022-50359 1 Linux 1 Linux Kernel 2025-09-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: media: cx88: Fix a null-ptr-deref bug in buffer_prepare() When the driver calls cx88_risc_buffer() to prepare the buffer, the function call may fail, resulting in a empty buffer and null-ptr-deref later in buffer_queue(). The following log can reveal it: [ 41.822762] general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI [ 41.824488] KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] [ 41.828027] RIP: 0010:buffer_queue+0xc2/0x500 [ 41.836311] Call Trace: [ 41.836945] __enqueue_in_driver+0x141/0x360 [ 41.837262] vb2_start_streaming+0x62/0x4a0 [ 41.838216] vb2_core_streamon+0x1da/0x2c0 [ 41.838516] __vb2_init_fileio+0x981/0xbc0 [ 41.839141] __vb2_perform_fileio+0xbf9/0x1120 [ 41.840072] vb2_fop_read+0x20e/0x400 [ 41.840346] v4l2_read+0x215/0x290 [ 41.840603] vfs_read+0x162/0x4c0 Fix this by checking the return value of cx88_risc_buffer() [hverkuil: fix coding style issues]
CVE-2022-50365 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: skbuff: Account for tail adjustment during pull operations Extending the tail can have some unexpected side effects if a program uses a helper like BPF_FUNC_skb_pull_data to read partial content beyond the head skb headlen when all the skbs in the gso frag_list are linear with no head_frag - kernel BUG at net/core/skbuff.c:4219! pc : skb_segment+0xcf4/0xd2c lr : skb_segment+0x63c/0xd2c Call trace: skb_segment+0xcf4/0xd2c __udp_gso_segment+0xa4/0x544 udp4_ufo_fragment+0x184/0x1c0 inet_gso_segment+0x16c/0x3a4 skb_mac_gso_segment+0xd4/0x1b0 __skb_gso_segment+0xcc/0x12c udp_rcv_segment+0x54/0x16c udp_queue_rcv_skb+0x78/0x144 udp_unicast_rcv_skb+0x8c/0xa4 __udp4_lib_rcv+0x490/0x68c udp_rcv+0x20/0x30 ip_protocol_deliver_rcu+0x1b0/0x33c ip_local_deliver+0xd8/0x1f0 ip_rcv+0x98/0x1a4 deliver_ptype_list_skb+0x98/0x1ec __netif_receive_skb_core+0x978/0xc60 Fix this by marking these skbs as GSO_DODGY so segmentation can handle the tail updates accordingly.
CVE-2022-50369 1 Linux 1 Linux Kernel 2025-09-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/vkms: Fix null-ptr-deref in vkms_release() A null-ptr-deref is triggered when it tries to destroy the workqueue in vkms->output.composer_workq in vkms_release(). KASAN: null-ptr-deref in range [0x0000000000000118-0x000000000000011f] CPU: 5 PID: 17193 Comm: modprobe Not tainted 6.0.0-11331-gd465bff130bf #24 RIP: 0010:destroy_workqueue+0x2f/0x710 ... Call Trace: <TASK> ? vkms_config_debugfs_init+0x50/0x50 [vkms] __devm_drm_dev_alloc+0x15a/0x1c0 [drm] vkms_init+0x245/0x1000 [vkms] do_one_initcall+0xd0/0x4f0 do_init_module+0x1a4/0x680 load_module+0x6249/0x7110 __do_sys_finit_module+0x140/0x200 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 The reason is that an OOM happened which triggers the destroy of the workqueue, however, the workqueue is alloced in the later process, thus a null-ptr-deref happened. A simple call graph is shown as below: vkms_init() vkms_create() devm_drm_dev_alloc() __devm_drm_dev_alloc() devm_drm_dev_init() devm_add_action_or_reset() devm_add_action() # an error happened devm_drm_dev_init_release() drm_dev_put() kref_put() drm_dev_release() vkms_release() destroy_workqueue() # null-ptr-deref happened vkms_modeset_init() vkms_output_init() vkms_crtc_init() # where the workqueue get allocated Fix this by checking if composer_workq is NULL before passing it to the destroy_workqueue() in vkms_release().
CVE-2022-50372 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix memory leak when build ntlmssp negotiate blob failed There is a memory leak when mount cifs: unreferenced object 0xffff888166059600 (size 448): comm "mount.cifs", pid 51391, jiffies 4295596373 (age 330.596s) hex dump (first 32 bytes): fe 53 4d 42 40 00 00 00 00 00 00 00 01 00 82 00 .SMB@........... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<0000000060609a61>] mempool_alloc+0xe1/0x260 [<00000000adfa6c63>] cifs_small_buf_get+0x24/0x60 [<00000000ebb404c7>] __smb2_plain_req_init+0x32/0x460 [<00000000bcf875b4>] SMB2_sess_alloc_buffer+0xa4/0x3f0 [<00000000753a2987>] SMB2_sess_auth_rawntlmssp_negotiate+0xf5/0x480 [<00000000f0c1f4f9>] SMB2_sess_setup+0x253/0x410 [<00000000a8b83303>] cifs_setup_session+0x18f/0x4c0 [<00000000854bd16d>] cifs_get_smb_ses+0xae7/0x13c0 [<000000006cbc43d9>] mount_get_conns+0x7a/0x730 [<000000005922d816>] cifs_mount+0x103/0xd10 [<00000000e33def3b>] cifs_smb3_do_mount+0x1dd/0xc90 [<0000000078034979>] smb3_get_tree+0x1d5/0x300 [<000000004371f980>] vfs_get_tree+0x41/0xf0 [<00000000b670d8a7>] path_mount+0x9b3/0xdd0 [<000000005e839a7d>] __x64_sys_mount+0x190/0x1d0 [<000000009404c3b9>] do_syscall_64+0x35/0x80 When build ntlmssp negotiate blob failed, the session setup request should be freed.
CVE-2023-53339 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix BUG_ON condition in btrfs_cancel_balance Pausing and canceling balance can race to interrupt balance lead to BUG_ON panic in btrfs_cancel_balance. The BUG_ON condition in btrfs_cancel_balance does not take this race scenario into account. However, the race condition has no other side effects. We can fix that. Reproducing it with panic trace like this: kernel BUG at fs/btrfs/volumes.c:4618! RIP: 0010:btrfs_cancel_balance+0x5cf/0x6a0 Call Trace: <TASK> ? do_nanosleep+0x60/0x120 ? hrtimer_nanosleep+0xb7/0x1a0 ? sched_core_clone_cookie+0x70/0x70 btrfs_ioctl_balance_ctl+0x55/0x70 btrfs_ioctl+0xa46/0xd20 __x64_sys_ioctl+0x7d/0xa0 do_syscall_64+0x38/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Race scenario as follows: > mutex_unlock(&fs_info->balance_mutex); > -------------------- > .......issue pause and cancel req in another thread > -------------------- > ret = __btrfs_balance(fs_info); > > mutex_lock(&fs_info->balance_mutex); > if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { > btrfs_info(fs_info, "balance: paused"); > btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); > }
CVE-2023-53351 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/sched: Check scheduler work queue before calling timeout handling During an IGT GPU reset test we see again oops despite of commit 0c8c901aaaebc9 (drm/sched: Check scheduler ready before calling timeout handling). It uses ready condition whether to call drm_sched_fault which unwind the TDR leads to GPU reset. However it looks the ready condition is overloaded with other meanings, for example, for the following stack is related GPU reset : 0 gfx_v9_0_cp_gfx_start 1 gfx_v9_0_cp_gfx_resume 2 gfx_v9_0_cp_resume 3 gfx_v9_0_hw_init 4 gfx_v9_0_resume 5 amdgpu_device_ip_resume_phase2 does the following: /* start the ring */ gfx_v9_0_cp_gfx_start(adev); ring->sched.ready = true; The same approach is for other ASICs as well : gfx_v8_0_cp_gfx_resume gfx_v10_0_kiq_resume, etc... As a result, our GPU reset test causes GPU fault which calls unconditionally gfx_v9_0_fault and then drm_sched_fault. However now it depends on whether the interrupt service routine drm_sched_fault is executed after gfx_v9_0_cp_gfx_start is completed which sets the ready field of the scheduler to true even for uninitialized schedulers and causes oops vs no fault or when ISR drm_sched_fault is completed prior gfx_v9_0_cp_gfx_start and NULL pointer dereference does not occur. Use the field timeout_wq to prevent oops for uninitialized schedulers. The field could be initialized by the work queue of resetting the domain. v1: Corrections to commit message (Luben)
CVE-2023-53354 1 Linux 1 Linux Kernel 2025-09-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: skbuff: skb_segment, Call zero copy functions before using skbuff frags Commit bf5c25d60861 ("skbuff: in skb_segment, call zerocopy functions once per nskb") added the call to zero copy functions in skb_segment(). The change introduced a bug in skb_segment() because skb_orphan_frags() may possibly change the number of fragments or allocate new fragments altogether leaving nrfrags and frag to point to the old values. This can cause a panic with stacktrace like the one below. [ 193.894380] BUG: kernel NULL pointer dereference, address: 00000000000000bc [ 193.895273] CPU: 13 PID: 18164 Comm: vh-net-17428 Kdump: loaded Tainted: G O 5.15.123+ #26 [ 193.903919] RIP: 0010:skb_segment+0xb0e/0x12f0 [ 194.021892] Call Trace: [ 194.027422] <TASK> [ 194.072861] tcp_gso_segment+0x107/0x540 [ 194.082031] inet_gso_segment+0x15c/0x3d0 [ 194.090783] skb_mac_gso_segment+0x9f/0x110 [ 194.095016] __skb_gso_segment+0xc1/0x190 [ 194.103131] netem_enqueue+0x290/0xb10 [sch_netem] [ 194.107071] dev_qdisc_enqueue+0x16/0x70 [ 194.110884] __dev_queue_xmit+0x63b/0xb30 [ 194.121670] bond_start_xmit+0x159/0x380 [bonding] [ 194.128506] dev_hard_start_xmit+0xc3/0x1e0 [ 194.131787] __dev_queue_xmit+0x8a0/0xb30 [ 194.138225] macvlan_start_xmit+0x4f/0x100 [macvlan] [ 194.141477] dev_hard_start_xmit+0xc3/0x1e0 [ 194.144622] sch_direct_xmit+0xe3/0x280 [ 194.147748] __dev_queue_xmit+0x54a/0xb30 [ 194.154131] tap_get_user+0x2a8/0x9c0 [tap] [ 194.157358] tap_sendmsg+0x52/0x8e0 [tap] [ 194.167049] handle_tx_zerocopy+0x14e/0x4c0 [vhost_net] [ 194.173631] handle_tx+0xcd/0xe0 [vhost_net] [ 194.176959] vhost_worker+0x76/0xb0 [vhost] [ 194.183667] kthread+0x118/0x140 [ 194.190358] ret_from_fork+0x1f/0x30 [ 194.193670] </TASK> In this case calling skb_orphan_frags() updated nr_frags leaving nrfrags local variable in skb_segment() stale. This resulted in the code hitting i >= nrfrags prematurely and trying to move to next frag_skb using list_skb pointer, which was NULL, and caused kernel panic. Move the call to zero copy functions before using frags and nr_frags.
CVE-2025-10606 1 Portabilis 1 I-educar 2025-09-18 4.3 Medium
A weakness has been identified in Portabilis i-Educar up to 2.10. This issue affects some unknown processing of the file /module/Configuracao/ConfiguracaoMovimentoGeral. This manipulation of the argument tipoacao causes cross site scripting. Remote exploitation of the attack is possible. The exploit has been made available to the public and could be exploited.
CVE-2025-10613 1 Itsourcecode 1 Student Information Management System 2025-09-18 6.3 Medium
A vulnerability has been found in itsourcecode Student Information System 1.0. The affected element is an unknown function of the file /leveledit1.php. Such manipulation of the argument level_id leads to sql injection. The attack may be performed from remote. The exploit has been disclosed to the public and may be used.
CVE-2025-10605 1 Portabilis 1 I-educar 2025-09-18 4.3 Medium
A security flaw has been discovered in Portabilis i-Educar up to 2.10. This vulnerability affects unknown code of the file /agenda_preferencias.php. The manipulation of the argument tipoacao results in cross site scripting. The attack may be launched remotely. The exploit has been released to the public and may be exploited.
CVE-2025-10596 2 Online Exam Form Submission Project, Sourcecodester 2 Online Exam Form Submission, Online Exam Form Submission 2025-09-18 7.3 High
A vulnerability was found in SourceCodester Online Exam Form Submission 1.0. This affects an unknown part of the file /index.php. The manipulation of the argument usn results in sql injection. The attack can be launched remotely. The exploit has been made public and could be used.
CVE-2025-10597 1 Kidaze 1 Courseselectionsystem 2025-09-18 7.3 High
A vulnerability was determined in kidaze CourseSelectionSystem up to 42cd892b40a18d50bd4ed1905fa89f939173a464. This vulnerability affects unknown code of the file /Profilers/PriProfile/COUNT2.php. This manipulation of the argument cname causes sql injection. The attack may be initiated remotely. This product uses a rolling release model to deliver continuous updates. As a result, specific version information for affected or updated releases is not available.