CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed a malicious certificate or for an application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address in a certificate to overflow an arbitrary number of bytes containing the `.' character (decimal 46) on the stack. This buffer overflow could result in a crash (causing a denial of service). In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects.
|
A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed the malicious certificate or for the application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address to overflow four attacker-controlled bytes on the stack. This buffer overflow could result in a crash (causing a denial of service) or potentially remote code execution. Many platforms implement stack overflow protections which would mitigate against the risk of remote code execution. The risk may be further mitigated based on stack layout for any given platform/compiler. Pre-announcements of CVE-2022-3602 described this issue as CRITICAL. Further analysis based on some of the mitigating factors described above have led this to be downgraded to HIGH. Users are still encouraged to upgrade to a new version as soon as possible. In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. Fixed in OpenSSL 3.0.7 (Affected 3.0.0,3.0.1,3.0.2,3.0.3,3.0.4,3.0.5,3.0.6). |
A vulnerability named 'Non-Responsive Delegation Attack' (NRDelegation Attack) has been discovered in various DNS resolving software. The NRDelegation Attack works by having a malicious delegation with a considerable number of non responsive nameservers. The attack starts by querying a resolver for a record that relies on those unresponsive nameservers. The attack can cause a resolver to spend a lot of time/resources resolving records under a malicious delegation point where a considerable number of unresponsive NS records reside. It can trigger high CPU usage in some resolver implementations that continually look in the cache for resolved NS records in that delegation. This can lead to degraded performance and eventually denial of service in orchestrated attacks. Unbound does not suffer from high CPU usage, but resources are still needed for resolving the malicious delegation. Unbound will keep trying to resolve the record until hard limits are reached. Based on the nature of the attack and the replies, different limits could be reached. From version 1.16.3 on, Unbound introduces fixes for better performance when under load, by cutting opportunistic queries for nameserver discovery and DNSKEY prefetching and limiting the number of times a delegation point can issue a cache lookup for missing records. |
A logic issue was addressed with improved checks. This issue is fixed in iOS 17.1 and iPadOS 17.1, watchOS 10.1, iOS 16.7.2 and iPadOS 16.7.2, macOS Sonoma 14.1, Safari 17.1, tvOS 17.1. Processing web content may lead to arbitrary code execution. |
The implementation of PEAP in wpa_supplicant through 2.10 allows authentication bypass. For a successful attack, wpa_supplicant must be configured to not verify the network's TLS certificate during Phase 1 authentication, and an eap_peap_decrypt vulnerability can then be abused to skip Phase 2 authentication. The attack vector is sending an EAP-TLV Success packet instead of starting Phase 2. This allows an adversary to impersonate Enterprise Wi-Fi networks. |
MIT krb5 1.6 or later allows an authenticated kadmin with permission to add principals to an LDAP Kerberos database to cause a denial of service (NULL pointer dereference) or bypass a DN container check by supplying tagged data that is internal to the database module. |
MIT krb5 1.6 or later allows an authenticated kadmin with permission to add principals to an LDAP Kerberos database to circumvent a DN containership check by supplying both a "linkdn" and "containerdn" database argument, or by supplying a DN string which is a left extension of a container DN string but is not hierarchically within the container DN. |
A memory leak in the fsl_lpspi_probe() function in drivers/spi/spi-fsl-lpspi.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering pm_runtime_get_sync() failures, aka CID-057b8945f78f. NOTE: third parties dispute the relevance of this because an attacker cannot realistically control these failures at probe time |
ldebug.c in Lua 5.4.0 allows a negation overflow and segmentation fault in getlocal and setlocal, as demonstrated by getlocal(3,2^31). |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_pipapo: walk over current view on netlink dump
The generation mask can be updated while netlink dump is in progress.
The pipapo set backend walk iterator cannot rely on it to infer what
view of the datastructure is to be used. Add notation to specify if user
wants to read/update the set.
Based on patch from Florian Westphal. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: restore set elements when delete set fails
From abort path, nft_mapelem_activate() needs to restore refcounters to
the original state. Currently, it uses the set->ops->walk() to iterate
over these set elements. The existing set iterator skips inactive
elements in the next generation, this does not work from the abort path
to restore the original state since it has to skip active elements
instead (not inactive ones).
This patch moves the check for inactive elements to the set iterator
callback, then it reverses the logic for the .activate case which
needs to skip active elements.
Toggle next generation bit for elements when delete set command is
invoked and call nft_clear() from .activate (abort) path to restore the
next generation bit.
The splat below shows an object in mappings memleak:
[43929.457523] ------------[ cut here ]------------
[43929.457532] WARNING: CPU: 0 PID: 1139 at include/net/netfilter/nf_tables.h:1237 nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables]
[...]
[43929.458014] RIP: 0010:nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables]
[43929.458076] Code: 83 f8 01 77 ab 49 8d 7c 24 08 e8 37 5e d0 de 49 8b 6c 24 08 48 8d 7d 50 e8 e9 5c d0 de 8b 45 50 8d 50 ff 89 55 50 85 c0 75 86 <0f> 0b eb 82 0f 0b eb b3 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90
[43929.458081] RSP: 0018:ffff888140f9f4b0 EFLAGS: 00010246
[43929.458086] RAX: 0000000000000000 RBX: ffff8881434f5288 RCX: dffffc0000000000
[43929.458090] RDX: 00000000ffffffff RSI: ffffffffa26d28a7 RDI: ffff88810ecc9550
[43929.458093] RBP: ffff88810ecc9500 R08: 0000000000000001 R09: ffffed10281f3e8f
[43929.458096] R10: 0000000000000003 R11: ffff0000ffff0000 R12: ffff8881434f52a0
[43929.458100] R13: ffff888140f9f5f4 R14: ffff888151c7a800 R15: 0000000000000002
[43929.458103] FS: 00007f0c687c4740(0000) GS:ffff888390800000(0000) knlGS:0000000000000000
[43929.458107] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[43929.458111] CR2: 00007f58dbe5b008 CR3: 0000000123602005 CR4: 00000000001706f0
[43929.458114] Call Trace:
[43929.458118] <TASK>
[43929.458121] ? __warn+0x9f/0x1a0
[43929.458127] ? nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables]
[43929.458188] ? report_bug+0x1b1/0x1e0
[43929.458196] ? handle_bug+0x3c/0x70
[43929.458200] ? exc_invalid_op+0x17/0x40
[43929.458211] ? nft_setelem_data_deactivate+0xd7/0xf0 [nf_tables]
[43929.458271] ? nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables]
[43929.458332] nft_mapelem_deactivate+0x24/0x30 [nf_tables]
[43929.458392] nft_rhash_walk+0xdd/0x180 [nf_tables]
[43929.458453] ? __pfx_nft_rhash_walk+0x10/0x10 [nf_tables]
[43929.458512] ? rb_insert_color+0x2e/0x280
[43929.458520] nft_map_deactivate+0xdc/0x1e0 [nf_tables]
[43929.458582] ? __pfx_nft_map_deactivate+0x10/0x10 [nf_tables]
[43929.458642] ? __pfx_nft_mapelem_deactivate+0x10/0x10 [nf_tables]
[43929.458701] ? __rcu_read_unlock+0x46/0x70
[43929.458709] nft_delset+0xff/0x110 [nf_tables]
[43929.458769] nft_flush_table+0x16f/0x460 [nf_tables]
[43929.458830] nf_tables_deltable+0x501/0x580 [nf_tables] |
In the Linux kernel, the following vulnerability has been resolved:
dyndbg: fix old BUG_ON in >control parser
Fix a BUG_ON from 2009. Even if it looks "unreachable" (I didn't
really look), lets make sure by removing it, doing pr_err and return
-EINVAL instead. |
In the Linux kernel, the following vulnerability has been resolved:
r8169: fix LED-related deadlock on module removal
Binding devm_led_classdev_register() to the netdev is problematic
because on module removal we get a RTNL-related deadlock. Fix this
by avoiding the device-managed LED functions.
Note: We can safely call led_classdev_unregister() for a LED even
if registering it failed, because led_classdev_unregister() detects
this and is a no-op in this case. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: Fix potential data-race in __nft_obj_type_get()
nft_unregister_obj() can concurrent with __nft_obj_type_get(),
and there is not any protection when iterate over nf_tables_objects
list in __nft_obj_type_get(). Therefore, there is potential data-race
of nf_tables_objects list entry.
Use list_for_each_entry_rcu() to iterate over nf_tables_objects
list in __nft_obj_type_get(), and use rcu_read_lock() in the caller
nft_obj_type_get() to protect the entire type query process. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: flowtable: validate pppoe header
Ensure there is sufficient room to access the protocol field of the
PPPoe header. Validate it once before the flowtable lookup, then use a
helper function to access protocol field. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: flowtable: incorrect pppoe tuple
pppoe traffic reaching ingress path does not match the flowtable entry
because the pppoe header is expected to be at the network header offset.
This bug causes a mismatch in the flow table lookup, so pppoe packets
enter the classical forwarding path. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Prevent deadlock while disabling aRFS
When disabling aRFS under the `priv->state_lock`, any scheduled
aRFS works are canceled using the `cancel_work_sync` function,
which waits for the work to end if it has already started.
However, while waiting for the work handler, the handler will
try to acquire the `state_lock` which is already acquired.
The worker acquires the lock to delete the rules if the state
is down, which is not the worker's responsibility since
disabling aRFS deletes the rules.
Add an aRFS state variable, which indicates whether the aRFS is
enabled and prevent adding rules when the aRFS is disabled.
Kernel log:
======================================================
WARNING: possible circular locking dependency detected
6.7.0-rc4_net_next_mlx5_5483eb2 #1 Tainted: G I
------------------------------------------------------
ethtool/386089 is trying to acquire lock:
ffff88810f21ce68 ((work_completion)(&rule->arfs_work)){+.+.}-{0:0}, at: __flush_work+0x74/0x4e0
but task is already holding lock:
ffff8884a1808cc0 (&priv->state_lock){+.+.}-{3:3}, at: mlx5e_ethtool_set_channels+0x53/0x200 [mlx5_core]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&priv->state_lock){+.+.}-{3:3}:
__mutex_lock+0x80/0xc90
arfs_handle_work+0x4b/0x3b0 [mlx5_core]
process_one_work+0x1dc/0x4a0
worker_thread+0x1bf/0x3c0
kthread+0xd7/0x100
ret_from_fork+0x2d/0x50
ret_from_fork_asm+0x11/0x20
-> #0 ((work_completion)(&rule->arfs_work)){+.+.}-{0:0}:
__lock_acquire+0x17b4/0x2c80
lock_acquire+0xd0/0x2b0
__flush_work+0x7a/0x4e0
__cancel_work_timer+0x131/0x1c0
arfs_del_rules+0x143/0x1e0 [mlx5_core]
mlx5e_arfs_disable+0x1b/0x30 [mlx5_core]
mlx5e_ethtool_set_channels+0xcb/0x200 [mlx5_core]
ethnl_set_channels+0x28f/0x3b0
ethnl_default_set_doit+0xec/0x240
genl_family_rcv_msg_doit+0xd0/0x120
genl_rcv_msg+0x188/0x2c0
netlink_rcv_skb+0x54/0x100
genl_rcv+0x24/0x40
netlink_unicast+0x1a1/0x270
netlink_sendmsg+0x214/0x460
__sock_sendmsg+0x38/0x60
__sys_sendto+0x113/0x170
__x64_sys_sendto+0x20/0x30
do_syscall_64+0x40/0xe0
entry_SYSCALL_64_after_hwframe+0x46/0x4e
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&priv->state_lock);
lock((work_completion)(&rule->arfs_work));
lock(&priv->state_lock);
lock((work_completion)(&rule->arfs_work));
*** DEADLOCK ***
3 locks held by ethtool/386089:
#0: ffffffff82ea7210 (cb_lock){++++}-{3:3}, at: genl_rcv+0x15/0x40
#1: ffffffff82e94c88 (rtnl_mutex){+.+.}-{3:3}, at: ethnl_default_set_doit+0xd3/0x240
#2: ffff8884a1808cc0 (&priv->state_lock){+.+.}-{3:3}, at: mlx5e_ethtool_set_channels+0x53/0x200 [mlx5_core]
stack backtrace:
CPU: 15 PID: 386089 Comm: ethtool Tainted: G I 6.7.0-rc4_net_next_mlx5_5483eb2 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x60/0xa0
check_noncircular+0x144/0x160
__lock_acquire+0x17b4/0x2c80
lock_acquire+0xd0/0x2b0
? __flush_work+0x74/0x4e0
? save_trace+0x3e/0x360
? __flush_work+0x74/0x4e0
__flush_work+0x7a/0x4e0
? __flush_work+0x74/0x4e0
? __lock_acquire+0xa78/0x2c80
? lock_acquire+0xd0/0x2b0
? mark_held_locks+0x49/0x70
__cancel_work_timer+0x131/0x1c0
? mark_held_locks+0x49/0x70
arfs_del_rules+0x143/0x1e0 [mlx5_core]
mlx5e_arfs_disable+0x1b/0x30 [mlx5_core]
mlx5e_ethtool_set_channels+0xcb/0x200 [mlx5_core]
ethnl_set_channels+0x28f/0x3b0
ethnl_default_set_doit+0xec/0x240
genl_family_rcv_msg_doit+0xd0/0x120
genl_rcv_msg+0x188/0x2c0
? ethn
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
tun: limit printing rate when illegal packet received by tun dev
vhost_worker will call tun call backs to receive packets. If too many
illegal packets arrives, tun_do_read will keep dumping packet contents.
When console is enabled, it will costs much more cpu time to dump
packet and soft lockup will be detected.
net_ratelimit mechanism can be used to limit the dumping rate.
PID: 33036 TASK: ffff949da6f20000 CPU: 23 COMMAND: "vhost-32980"
#0 [fffffe00003fce50] crash_nmi_callback at ffffffff89249253
#1 [fffffe00003fce58] nmi_handle at ffffffff89225fa3
#2 [fffffe00003fceb0] default_do_nmi at ffffffff8922642e
#3 [fffffe00003fced0] do_nmi at ffffffff8922660d
#4 [fffffe00003fcef0] end_repeat_nmi at ffffffff89c01663
[exception RIP: io_serial_in+20]
RIP: ffffffff89792594 RSP: ffffa655314979e8 RFLAGS: 00000002
RAX: ffffffff89792500 RBX: ffffffff8af428a0 RCX: 0000000000000000
RDX: 00000000000003fd RSI: 0000000000000005 RDI: ffffffff8af428a0
RBP: 0000000000002710 R8: 0000000000000004 R9: 000000000000000f
R10: 0000000000000000 R11: ffffffff8acbf64f R12: 0000000000000020
R13: ffffffff8acbf698 R14: 0000000000000058 R15: 0000000000000000
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#5 [ffffa655314979e8] io_serial_in at ffffffff89792594
#6 [ffffa655314979e8] wait_for_xmitr at ffffffff89793470
#7 [ffffa65531497a08] serial8250_console_putchar at ffffffff897934f6
#8 [ffffa65531497a20] uart_console_write at ffffffff8978b605
#9 [ffffa65531497a48] serial8250_console_write at ffffffff89796558
#10 [ffffa65531497ac8] console_unlock at ffffffff89316124
#11 [ffffa65531497b10] vprintk_emit at ffffffff89317c07
#12 [ffffa65531497b68] printk at ffffffff89318306
#13 [ffffa65531497bc8] print_hex_dump at ffffffff89650765
#14 [ffffa65531497ca8] tun_do_read at ffffffffc0b06c27 [tun]
#15 [ffffa65531497d38] tun_recvmsg at ffffffffc0b06e34 [tun]
#16 [ffffa65531497d68] handle_rx at ffffffffc0c5d682 [vhost_net]
#17 [ffffa65531497ed0] vhost_worker at ffffffffc0c644dc [vhost]
#18 [ffffa65531497f10] kthread at ffffffff892d2e72
#19 [ffffa65531497f50] ret_from_fork at ffffffff89c0022f |
In the Linux kernel, the following vulnerability has been resolved:
mm/memory-failure: fix deadlock when hugetlb_optimize_vmemmap is enabled
When I did hard offline test with hugetlb pages, below deadlock occurs:
======================================================
WARNING: possible circular locking dependency detected
6.8.0-11409-gf6cef5f8c37f #1 Not tainted
------------------------------------------------------
bash/46904 is trying to acquire lock:
ffffffffabe68910 (cpu_hotplug_lock){++++}-{0:0}, at: static_key_slow_dec+0x16/0x60
but task is already holding lock:
ffffffffabf92ea8 (pcp_batch_high_lock){+.+.}-{3:3}, at: zone_pcp_disable+0x16/0x40
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (pcp_batch_high_lock){+.+.}-{3:3}:
__mutex_lock+0x6c/0x770
page_alloc_cpu_online+0x3c/0x70
cpuhp_invoke_callback+0x397/0x5f0
__cpuhp_invoke_callback_range+0x71/0xe0
_cpu_up+0xeb/0x210
cpu_up+0x91/0xe0
cpuhp_bringup_mask+0x49/0xb0
bringup_nonboot_cpus+0xb7/0xe0
smp_init+0x25/0xa0
kernel_init_freeable+0x15f/0x3e0
kernel_init+0x15/0x1b0
ret_from_fork+0x2f/0x50
ret_from_fork_asm+0x1a/0x30
-> #0 (cpu_hotplug_lock){++++}-{0:0}:
__lock_acquire+0x1298/0x1cd0
lock_acquire+0xc0/0x2b0
cpus_read_lock+0x2a/0xc0
static_key_slow_dec+0x16/0x60
__hugetlb_vmemmap_restore_folio+0x1b9/0x200
dissolve_free_huge_page+0x211/0x260
__page_handle_poison+0x45/0xc0
memory_failure+0x65e/0xc70
hard_offline_page_store+0x55/0xa0
kernfs_fop_write_iter+0x12c/0x1d0
vfs_write+0x387/0x550
ksys_write+0x64/0xe0
do_syscall_64+0xca/0x1e0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(pcp_batch_high_lock);
lock(cpu_hotplug_lock);
lock(pcp_batch_high_lock);
rlock(cpu_hotplug_lock);
*** DEADLOCK ***
5 locks held by bash/46904:
#0: ffff98f6c3bb23f0 (sb_writers#5){.+.+}-{0:0}, at: ksys_write+0x64/0xe0
#1: ffff98f6c328e488 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0xf8/0x1d0
#2: ffff98ef83b31890 (kn->active#113){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x100/0x1d0
#3: ffffffffabf9db48 (mf_mutex){+.+.}-{3:3}, at: memory_failure+0x44/0xc70
#4: ffffffffabf92ea8 (pcp_batch_high_lock){+.+.}-{3:3}, at: zone_pcp_disable+0x16/0x40
stack backtrace:
CPU: 10 PID: 46904 Comm: bash Kdump: loaded Not tainted 6.8.0-11409-gf6cef5f8c37f #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x68/0xa0
check_noncircular+0x129/0x140
__lock_acquire+0x1298/0x1cd0
lock_acquire+0xc0/0x2b0
cpus_read_lock+0x2a/0xc0
static_key_slow_dec+0x16/0x60
__hugetlb_vmemmap_restore_folio+0x1b9/0x200
dissolve_free_huge_page+0x211/0x260
__page_handle_poison+0x45/0xc0
memory_failure+0x65e/0xc70
hard_offline_page_store+0x55/0xa0
kernfs_fop_write_iter+0x12c/0x1d0
vfs_write+0x387/0x550
ksys_write+0x64/0xe0
do_syscall_64+0xca/0x1e0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
RIP: 0033:0x7fc862314887
Code: 10 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 48 89 54 24 18 48 89 74 24
RSP: 002b:00007fff19311268 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 000000000000000c RCX: 00007fc862314887
RDX: 000000000000000c RSI: 000056405645fe10 RDI: 0000000000000001
RBP: 000056405645fe10 R08: 00007fc8623d1460 R09: 000000007fffffff
R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000000c
R13: 00007fc86241b780 R14: 00007fc862417600 R15: 00007fc862416a00
In short, below scene breaks the
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix memory leak in create_process failure
Fix memory leak due to a leaked mmget reference on an error handling
code path that is triggered when attempting to create KFD processes
while a GPU reset is in progress. |