Search Results (14379 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50474 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: macintosh: fix possible memory leak in macio_add_one_device() Afer commit 1fa5ae857bb1 ("driver core: get rid of struct device's bus_id string array"), the name of device is allocated dynamically. It needs to be freed when of_device_register() fails. Call put_device() to give up the reference that's taken in device_initialize(), so that it can be freed in kobject_cleanup() when the refcount hits 0. macio device is freed in macio_release_dev(), so the kfree() can be removed.
CVE-2022-50470 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: xhci: Remove device endpoints from bandwidth list when freeing the device Endpoints are normally deleted from the bandwidth list when they are dropped, before the virt device is freed. If xHC host is dying or being removed then the endpoints aren't dropped cleanly due to functions returning early to avoid interacting with a non-accessible host controller. So check and delete endpoints that are still on the bandwidth list when freeing the virt device. Solves a list_del corruption kernel crash when unbinding xhci-pci, caused by xhci_mem_cleanup() when it later tried to delete already freed endpoints from the bandwidth list. This only affects hosts that use software bandwidth checking, which currenty is only the xHC in intel Panther Point PCH (Ivy Bridge)
CVE-2022-50471 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: xen/gntdev: Accommodate VMA splitting Prior to this commit, the gntdev driver code did not handle the following scenario correctly with paravirtualized (PV) Xen domains: * User process sets up a gntdev mapping composed of two grant mappings (i.e., two pages shared by another Xen domain). * User process munmap()s one of the pages. * User process munmap()s the remaining page. * User process exits. In the scenario above, the user process would cause the kernel to log the following messages in dmesg for the first munmap(), and the second munmap() call would result in similar log messages: BUG: Bad page map in process doublemap.test pte:... pmd:... page:0000000057c97bff refcount:1 mapcount:-1 \ mapping:0000000000000000 index:0x0 pfn:... ... page dumped because: bad pte ... file:gntdev fault:0x0 mmap:gntdev_mmap [xen_gntdev] readpage:0x0 ... Call Trace: <TASK> dump_stack_lvl+0x46/0x5e print_bad_pte.cold+0x66/0xb6 unmap_page_range+0x7e5/0xdc0 unmap_vmas+0x78/0xf0 unmap_region+0xa8/0x110 __do_munmap+0x1ea/0x4e0 __vm_munmap+0x75/0x120 __x64_sys_munmap+0x28/0x40 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x61/0xcb ... For each munmap() call, the Xen hypervisor (if built with CONFIG_DEBUG) would print out the following and trigger a general protection fault in the affected Xen PV domain: (XEN) d0v... Attempt to implicitly unmap d0's grant PTE ... (XEN) d0v... Attempt to implicitly unmap d0's grant PTE ... As of this writing, gntdev_grant_map structure's vma field (referred to as map->vma below) is mainly used for checking the start and end addresses of mappings. However, with split VMAs, these may change, and there could be more than one VMA associated with a gntdev mapping. Hence, remove the use of map->vma and rely on map->pages_vm_start for the original start address and on (map->count << PAGE_SHIFT) for the original mapping size. Let the invalidate() and find_special_page() hooks use these. Also, given that there can be multiple VMAs associated with a gntdev mapping, move the "mmu_interval_notifier_remove(&map->notifier)" call to the end of gntdev_put_map, so that the MMU notifier is only removed after the closing of the last remaining VMA. Finally, use an atomic to prevent inadvertent gntdev mapping re-use, instead of using the map->live_grants atomic counter and/or the map->vma pointer (the latter of which is now removed). This prevents the userspace from mmap()'ing (with MAP_FIXED) a gntdev mapping over the same address range as a previously set up gntdev mapping. This scenario can be summarized with the following call-trace, which was valid prior to this commit: mmap gntdev_mmap mmap (repeat mmap with MAP_FIXED over the same address range) gntdev_invalidate unmap_grant_pages (sets 'being_removed' entries to true) gnttab_unmap_refs_async unmap_single_vma gntdev_mmap (maps the shared pages again) munmap gntdev_invalidate unmap_grant_pages (no-op because 'being_removed' entries are true) unmap_single_vma (For PV domains, Xen reports that a granted page is being unmapped and triggers a general protection fault in the affected domain, if Xen was built with CONFIG_DEBUG) The fix for this last scenario could be worth its own commit, but we opted for a single commit, because removing the gntdev_grant_map structure's vma field requires guarding the entry to gntdev_mmap(), and the live_grants atomic counter is not sufficient on its own to prevent the mmap() over a pre-existing mapping.
CVE-2022-50478 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix shift-out-of-bounds/overflow in nilfs_sb2_bad_offset() Patch series "nilfs2: fix UBSAN shift-out-of-bounds warnings on mount time". The first patch fixes a bug reported by syzbot, and the second one fixes the remaining bug of the same kind. Although they are triggered by the same super block data anomaly, I divided it into the above two because the details of the issues and how to fix it are different. Both are required to eliminate the shift-out-of-bounds issues at mount time. This patch (of 2): If the block size exponent information written in an on-disk superblock is corrupted, nilfs_sb2_bad_offset helper function can trigger shift-out-of-bounds warning followed by a kernel panic (if panic_on_warn is set): shift exponent 38983 is too large for 64-bit type 'unsigned long long' Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106 ubsan_epilogue lib/ubsan.c:151 [inline] __ubsan_handle_shift_out_of_bounds+0x33d/0x3b0 lib/ubsan.c:322 nilfs_sb2_bad_offset fs/nilfs2/the_nilfs.c:449 [inline] nilfs_load_super_block+0xdf5/0xe00 fs/nilfs2/the_nilfs.c:523 init_nilfs+0xb7/0x7d0 fs/nilfs2/the_nilfs.c:577 nilfs_fill_super+0xb1/0x5d0 fs/nilfs2/super.c:1047 nilfs_mount+0x613/0x9b0 fs/nilfs2/super.c:1317 ... In addition, since nilfs_sb2_bad_offset() performs multiplication without considering the upper bound, the computation may overflow if the disk layout parameters are not normal. This fixes these issues by inserting preliminary sanity checks for those parameters and by converting the comparison from one involving multiplication and left bit-shifting to one using division and right bit-shifting.
CVE-2022-50477 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rtc: class: Fix potential memleak in devm_rtc_allocate_device() devm_rtc_allocate_device() will alloc a rtc_device first, and then run dev_set_name(). If dev_set_name() failed, the rtc_device will memleak. Move devm_add_action_or_reset() in front of dev_set_name() to prevent memleak. unreferenced object 0xffff888110a53000 (size 2048): comm "python3", pid 470, jiffies 4296078308 (age 58.882s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 08 30 a5 10 81 88 ff ff .........0...... 08 30 a5 10 81 88 ff ff 00 00 00 00 00 00 00 00 .0.............. backtrace: [<000000004aac0364>] kmalloc_trace+0x21/0x110 [<000000000ff02202>] devm_rtc_allocate_device+0xd4/0x400 [<000000001bdf5639>] devm_rtc_device_register+0x1a/0x80 [<00000000351bf81c>] rx4581_probe+0xdd/0x110 [rtc_rx4581] [<00000000f0eba0ae>] spi_probe+0xde/0x130 [<00000000bff89ee8>] really_probe+0x175/0x3f0 [<00000000128e8d84>] __driver_probe_device+0xe6/0x170 [<00000000ee5bf913>] device_driver_attach+0x32/0x80 [<00000000f3f28f92>] bind_store+0x10b/0x1a0 [<000000009ff812d8>] drv_attr_store+0x49/0x70 [<000000008139c323>] sysfs_kf_write+0x8d/0xb0 [<00000000b6146e01>] kernfs_fop_write_iter+0x214/0x2d0 [<00000000ecbe3895>] vfs_write+0x61a/0x7d0 [<00000000aa2196ea>] ksys_write+0xc8/0x190 [<0000000046a600f5>] do_syscall_64+0x37/0x90 [<00000000541a336f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVE-2025-23248 3 Linux, Microsoft, Nvidia 3 Linux Kernel, Windows, Cuda Toolkit 2025-10-06 3.3 Low
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the nvdisasm binary where a user may cause an out-of-bounds read by passing a malformed ELF file to nvdisasm. A successful exploit of this vulnerability may lead to a partial denial of service.
CVE-2022-50501 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: coda: Add check for dcoda_iram_alloc As the coda_iram_alloc may return NULL pointer, it should be better to check the return value in order to avoid NULL poineter dereference, same as the others.
CVE-2023-53588 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: check for station first in client probe When probing a client, first check if we have it, and then check for the channel context, otherwise you can trigger the warning there easily by probing when the AP isn't even started yet. Since a client existing means the AP is also operating, we can then keep the warning. Also simplify the moved code a bit.
CVE-2022-50506 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drbd: only clone bio if we have a backing device Commit c347a787e34cb (drbd: set ->bi_bdev in drbd_req_new) moved a bio_set_dev call (which has since been removed) to "earlier", from drbd_request_prepare to drbd_req_new. The problem is that this accesses device->ldev->backing_bdev, which is not NULL-checked at this point. When we don't have an ldev (i.e. when the DRBD device is diskless), this leads to a null pointer deref. So, only allocate the private_bio if we actually have a disk. This is also a small optimization, since we don't clone the bio to only to immediately free it again in the diskless case.
CVE-2023-53556 1 Linux 1 Linux Kernel 2025-10-06 N/A
In the Linux kernel, the following vulnerability has been resolved: iavf: Fix use-after-free in free_netdev We do netif_napi_add() for all allocated q_vectors[], but potentially do netif_napi_del() for part of them, then kfree q_vectors and leave invalid pointers at dev->napi_list. Reproducer: [root@host ~]# cat repro.sh #!/bin/bash pf_dbsf="0000:41:00.0" vf0_dbsf="0000:41:02.0" g_pids=() function do_set_numvf() { echo 2 >/sys/bus/pci/devices/${pf_dbsf}/sriov_numvfs sleep $((RANDOM%3+1)) echo 0 >/sys/bus/pci/devices/${pf_dbsf}/sriov_numvfs sleep $((RANDOM%3+1)) } function do_set_channel() { local nic=$(ls -1 --indicator-style=none /sys/bus/pci/devices/${vf0_dbsf}/net/) [ -z "$nic" ] && { sleep $((RANDOM%3)) ; return 1; } ifconfig $nic 192.168.18.5 netmask 255.255.255.0 ifconfig $nic up ethtool -L $nic combined 1 ethtool -L $nic combined 4 sleep $((RANDOM%3)) } function on_exit() { local pid for pid in "${g_pids[@]}"; do kill -0 "$pid" &>/dev/null && kill "$pid" &>/dev/null done g_pids=() } trap "on_exit; exit" EXIT while :; do do_set_numvf ; done & g_pids+=($!) while :; do do_set_channel ; done & g_pids+=($!) wait Result: [ 4093.900222] ================================================================== [ 4093.900230] BUG: KASAN: use-after-free in free_netdev+0x308/0x390 [ 4093.900232] Read of size 8 at addr ffff88b4dc145640 by task repro.sh/6699 [ 4093.900233] [ 4093.900236] CPU: 10 PID: 6699 Comm: repro.sh Kdump: loaded Tainted: G O --------- -t - 4.18.0 #1 [ 4093.900238] Hardware name: Powerleader PR2008AL/H12DSi-N6, BIOS 2.0 04/09/2021 [ 4093.900239] Call Trace: [ 4093.900244] dump_stack+0x71/0xab [ 4093.900249] print_address_description+0x6b/0x290 [ 4093.900251] ? free_netdev+0x308/0x390 [ 4093.900252] kasan_report+0x14a/0x2b0 [ 4093.900254] free_netdev+0x308/0x390 [ 4093.900261] iavf_remove+0x825/0xd20 [iavf] [ 4093.900265] pci_device_remove+0xa8/0x1f0 [ 4093.900268] device_release_driver_internal+0x1c6/0x460 [ 4093.900271] pci_stop_bus_device+0x101/0x150 [ 4093.900273] pci_stop_and_remove_bus_device+0xe/0x20 [ 4093.900275] pci_iov_remove_virtfn+0x187/0x420 [ 4093.900277] ? pci_iov_add_virtfn+0xe10/0xe10 [ 4093.900278] ? pci_get_subsys+0x90/0x90 [ 4093.900280] sriov_disable+0xed/0x3e0 [ 4093.900282] ? bus_find_device+0x12d/0x1a0 [ 4093.900290] i40e_free_vfs+0x754/0x1210 [i40e] [ 4093.900298] ? i40e_reset_all_vfs+0x880/0x880 [i40e] [ 4093.900299] ? pci_get_device+0x7c/0x90 [ 4093.900300] ? pci_get_subsys+0x90/0x90 [ 4093.900306] ? pci_vfs_assigned.part.7+0x144/0x210 [ 4093.900309] ? __mutex_lock_slowpath+0x10/0x10 [ 4093.900315] i40e_pci_sriov_configure+0x1fa/0x2e0 [i40e] [ 4093.900318] sriov_numvfs_store+0x214/0x290 [ 4093.900320] ? sriov_totalvfs_show+0x30/0x30 [ 4093.900321] ? __mutex_lock_slowpath+0x10/0x10 [ 4093.900323] ? __check_object_size+0x15a/0x350 [ 4093.900326] kernfs_fop_write+0x280/0x3f0 [ 4093.900329] vfs_write+0x145/0x440 [ 4093.900330] ksys_write+0xab/0x160 [ 4093.900332] ? __ia32_sys_read+0xb0/0xb0 [ 4093.900334] ? fput_many+0x1a/0x120 [ 4093.900335] ? filp_close+0xf0/0x130 [ 4093.900338] do_syscall_64+0xa0/0x370 [ 4093.900339] ? page_fault+0x8/0x30 [ 4093.900341] entry_SYSCALL_64_after_hwframe+0x65/0xca [ 4093.900357] RIP: 0033:0x7f16ad4d22c0 [ 4093.900359] Code: 73 01 c3 48 8b 0d d8 cb 2c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 83 3d 89 24 2d 00 00 75 10 b8 01 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 31 c3 48 83 ec 08 e8 fe dd 01 00 48 89 04 24 [ 4093.900360] RSP: 002b:00007ffd6491b7f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [ 4093.900362] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007f16ad4d22c0 [ 4093.900363] RDX: 0000000000000002 RSI: 0000000001a41408 RDI: 0000000000000001 [ 4093.900364] RBP: 0000000001a41408 R08: 00007f16ad7a1780 R09: 00007f16ae1f2700 [ 4093.9003 ---truncated---
CVE-2023-53613 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dax: Fix dax_mapping_release() use after free A CONFIG_DEBUG_KOBJECT_RELEASE test of removing a device-dax region provider (like modprobe -r dax_hmem) yields: kobject: 'mapping0' (ffff93eb460e8800): kobject_release, parent 0000000000000000 (delayed 2000) [..] DEBUG_LOCKS_WARN_ON(1) WARNING: CPU: 23 PID: 282 at kernel/locking/lockdep.c:232 __lock_acquire+0x9fc/0x2260 [..] RIP: 0010:__lock_acquire+0x9fc/0x2260 [..] Call Trace: <TASK> [..] lock_acquire+0xd4/0x2c0 ? ida_free+0x62/0x130 _raw_spin_lock_irqsave+0x47/0x70 ? ida_free+0x62/0x130 ida_free+0x62/0x130 dax_mapping_release+0x1f/0x30 device_release+0x36/0x90 kobject_delayed_cleanup+0x46/0x150 Due to attempting ida_free() on an ida object that has already been freed. Devices typically only hold a reference on their parent while registered. If a child needs a parent object to complete its release it needs to hold a reference that it drops from its release callback. Arrange for a dax_mapping to pin its parent dev_dax instance until dax_mapping_release().
CVE-2023-53540 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: reject auth/assoc to AP with our address If the AP uses our own address as its MLD address or BSSID, then clearly something's wrong. Reject such connections so we don't try and fail later.
CVE-2023-53539 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix incomplete state save in rxe_requester If a send packet is dropped by the IP layer in rxe_requester() the call to rxe_xmit_packet() can fail with err == -EAGAIN. To recover, the state of the wqe is restored to the state before the packet was sent so it can be resent. However, the routines that save and restore the state miss a significnt part of the variable state in the wqe, the dma struct which is used to process through the sge table. And, the state is not saved before the packet is built which modifies the dma struct. Under heavy stress testing with many QPs on a fast node sending large messages to a slow node dropped packets are observed and the resent packets are corrupted because the dma struct was not restored. This patch fixes this behavior and allows the test cases to succeed.
CVE-2023-53587 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Sync IRQ works before buffer destruction If something was written to the buffer just before destruction, it may be possible (maybe not in a real system, but it did happen in ARCH=um with time-travel) to destroy the ringbuffer before the IRQ work ran, leading this KASAN report (or a crash without KASAN): BUG: KASAN: slab-use-after-free in irq_work_run_list+0x11a/0x13a Read of size 8 at addr 000000006d640a48 by task swapper/0 CPU: 0 PID: 0 Comm: swapper Tainted: G W O 6.3.0-rc1 #7 Stack: 60c4f20f 0c203d48 41b58ab3 60f224fc 600477fa 60f35687 60c4f20f 601273dd 00000008 6101eb00 6101eab0 615be548 Call Trace: [<60047a58>] show_stack+0x25e/0x282 [<60c609e0>] dump_stack_lvl+0x96/0xfd [<60c50d4c>] print_report+0x1a7/0x5a8 [<603078d3>] kasan_report+0xc1/0xe9 [<60308950>] __asan_report_load8_noabort+0x1b/0x1d [<60232844>] irq_work_run_list+0x11a/0x13a [<602328b4>] irq_work_tick+0x24/0x34 [<6017f9dc>] update_process_times+0x162/0x196 [<6019f335>] tick_sched_handle+0x1a4/0x1c3 [<6019fd9e>] tick_sched_timer+0x79/0x10c [<601812b9>] __hrtimer_run_queues.constprop.0+0x425/0x695 [<60182913>] hrtimer_interrupt+0x16c/0x2c4 [<600486a3>] um_timer+0x164/0x183 [...] Allocated by task 411: save_stack_trace+0x99/0xb5 stack_trace_save+0x81/0x9b kasan_save_stack+0x2d/0x54 kasan_set_track+0x34/0x3e kasan_save_alloc_info+0x25/0x28 ____kasan_kmalloc+0x8b/0x97 __kasan_kmalloc+0x10/0x12 __kmalloc+0xb2/0xe8 load_elf_phdrs+0xee/0x182 [...] The buggy address belongs to the object at 000000006d640800 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 584 bytes inside of freed 1024-byte region [000000006d640800, 000000006d640c00) Add the appropriate irq_work_sync() so the work finishes before the buffers are destroyed. Prior to the commit in the Fixes tag below, there was only a single global IRQ work, so this issue didn't exist.
CVE-2023-53585 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: reject unhashed sockets in bpf_sk_assign The semantics for bpf_sk_assign are as follows: sk = some_lookup_func() bpf_sk_assign(skb, sk) bpf_sk_release(sk) That is, the sk is not consumed by bpf_sk_assign. The function therefore needs to make sure that sk lives long enough to be consumed from __inet_lookup_skb. The path through the stack for a TCPv4 packet is roughly: netif_receive_skb_core: takes RCU read lock __netif_receive_skb_core: sch_handle_ingress: tcf_classify: bpf_sk_assign() deliver_ptype_list_skb: deliver_skb: ip_packet_type->func == ip_rcv: ip_rcv_core: ip_rcv_finish_core: dst_input: ip_local_deliver: ip_local_deliver_finish: ip_protocol_deliver_rcu: tcp_v4_rcv: __inet_lookup_skb: skb_steal_sock The existing helper takes advantage of the fact that everything happens in the same RCU critical section: for sockets with SOCK_RCU_FREE set bpf_sk_assign never takes a reference. skb_steal_sock then checks SOCK_RCU_FREE again and does sock_put if necessary. This approach assumes that SOCK_RCU_FREE is never set on a sk between bpf_sk_assign and skb_steal_sock, but this invariant is violated by unhashed UDP sockets. A new UDP socket is created in TCP_CLOSE state but without SOCK_RCU_FREE set. That flag is only added in udp_lib_get_port() which happens when a socket is bound. When bpf_sk_assign was added it wasn't possible to access unhashed UDP sockets from BPF, so this wasn't a problem. This changed in commit 0c48eefae712 ("sock_map: Lift socket state restriction for datagram sockets"), but the helper wasn't adjusted accordingly. The following sequence of events will therefore lead to a refcount leak: 1. Add socket(AF_INET, SOCK_DGRAM) to a sockmap. 2. Pull socket out of sockmap and bpf_sk_assign it. Since SOCK_RCU_FREE is not set we increment the refcount. 3. bind() or connect() the socket, setting SOCK_RCU_FREE. 4. skb_steal_sock will now set refcounted = false due to SOCK_RCU_FREE. 5. tcp_v4_rcv() skips sock_put(). Fix the problem by rejecting unhashed sockets in bpf_sk_assign(). This matches the behaviour of __inet_lookup_skb which is ultimately the goal of bpf_sk_assign().
CVE-2023-53579 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gpio: mvebu: fix irq domain leak Uwe Kleine-König pointed out we still have one resource leak in the mvebu driver triggered on driver detach. Let's address it with a custom devm action.
CVE-2023-53599 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: af_alg - Fix missing initialisation affecting gcm-aes-s390 Fix af_alg_alloc_areq() to initialise areq->first_rsgl.sgl.sgt.sgl to point to the scatterlist array in areq->first_rsgl.sgl.sgl. Without this, the gcm-aes-s390 driver will oops when it tries to do gcm_walk_start() on req->dst because req->dst is set to the value of areq->first_rsgl.sgl.sgl by _aead_recvmsg() calling aead_request_set_crypt(). The problem comes if an empty ciphertext is passed: the loop in af_alg_get_rsgl() just passes straight out and doesn't set areq->first_rsgl up. This isn't a problem on x86_64 using gcmaes_crypt_by_sg() because, as far as I can tell, that ignores req->dst and only uses req->src[*]. [*] Is this a bug in aesni-intel_glue.c? The s390x oops looks something like: Unable to handle kernel pointer dereference in virtual kernel address space Failing address: 0000000a00000000 TEID: 0000000a00000803 Fault in home space mode while using kernel ASCE. AS:00000000a43a0007 R3:0000000000000024 Oops: 003b ilc:2 [#1] SMP ... Call Trace: [<000003ff7fc3d47e>] gcm_walk_start+0x16/0x28 [aes_s390] [<00000000a2a342f2>] crypto_aead_decrypt+0x9a/0xb8 [<00000000a2a60888>] aead_recvmsg+0x478/0x698 [<00000000a2e519a0>] sock_recvmsg+0x70/0xb0 [<00000000a2e51a56>] sock_read_iter+0x76/0xa0 [<00000000a273e066>] vfs_read+0x26e/0x2a8 [<00000000a273e8c4>] ksys_read+0xbc/0x100 [<00000000a311d808>] __do_syscall+0x1d0/0x1f8 [<00000000a312ff30>] system_call+0x70/0x98 Last Breaking-Event-Address: [<000003ff7fc3e6b4>] gcm_aes_crypt+0x104/0xa68 [aes_s390]
CVE-2023-53580 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: USB: Gadget: core: Help prevent panic during UVC unconfigure Avichal Rakesh reported a kernel panic that occurred when the UVC gadget driver was removed from a gadget's configuration. The panic involves a somewhat complicated interaction between the kernel driver and a userspace component (as described in the Link tag below), but the analysis did make one thing clear: The Gadget core should accomodate gadget drivers calling usb_gadget_deactivate() as part of their unbind procedure. Currently this doesn't work. gadget_unbind_driver() calls driver->unbind() while holding the udc->connect_lock mutex, and usb_gadget_deactivate() attempts to acquire that mutex, which will result in a deadlock. The simple fix is for gadget_unbind_driver() to release the mutex when invoking the ->unbind() callback. There is no particular reason for it to be holding the mutex at that time, and the mutex isn't held while the ->bind() callback is invoked. So we'll drop the mutex before performing the unbind callback and reacquire it afterward. We'll also add a couple of comments to usb_gadget_activate() and usb_gadget_deactivate(). Because they run in process context they must not be called from a gadget driver's ->disconnect() callback, which (according to the kerneldoc for struct usb_gadget_driver in include/linux/usb/gadget.h) may run in interrupt context. This may help prevent similar bugs from arising in the future.
CVE-2023-53548 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: usbnet: Fix WARNING in usbnet_start_xmit/usb_submit_urb The syzbot fuzzer identified a problem in the usbnet driver: usb 1-1: BOGUS urb xfer, pipe 3 != type 1 WARNING: CPU: 0 PID: 754 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504 Modules linked in: CPU: 0 PID: 754 Comm: kworker/0:2 Not tainted 6.4.0-rc7-syzkaller-00014-g692b7dc87ca6 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023 Workqueue: mld mld_ifc_work RIP: 0010:usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504 Code: 7c 24 18 e8 2c b4 5b fb 48 8b 7c 24 18 e8 42 07 f0 fe 41 89 d8 44 89 e1 4c 89 ea 48 89 c6 48 c7 c7 a0 c9 fc 8a e8 5a 6f 23 fb <0f> 0b e9 58 f8 ff ff e8 fe b3 5b fb 48 81 c5 c0 05 00 00 e9 84 f7 RSP: 0018:ffffc9000463f568 EFLAGS: 00010086 RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000 RDX: ffff88801eb28000 RSI: ffffffff814c03b7 RDI: 0000000000000001 RBP: ffff8881443b7190 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000003 R13: ffff88802a77cb18 R14: 0000000000000003 R15: ffff888018262500 FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000556a99c15a18 CR3: 0000000028c71000 CR4: 0000000000350ef0 Call Trace: <TASK> usbnet_start_xmit+0xfe5/0x2190 drivers/net/usb/usbnet.c:1453 __netdev_start_xmit include/linux/netdevice.h:4918 [inline] netdev_start_xmit include/linux/netdevice.h:4932 [inline] xmit_one net/core/dev.c:3578 [inline] dev_hard_start_xmit+0x187/0x700 net/core/dev.c:3594 ... This bug is caused by the fact that usbnet trusts the bulk endpoint addresses its probe routine receives in the driver_info structure, and it does not check to see that these endpoints actually exist and have the expected type and directions. The fix is simply to add such a check.
CVE-2023-53559 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ip_vti: fix potential slab-use-after-free in decode_session6 When ip_vti device is set to the qdisc of the sfb type, the cb field of the sent skb may be modified during enqueuing. Then, slab-use-after-free may occur when ip_vti device sends IPv6 packets. As commit f855691975bb ("xfrm6: Fix the nexthdr offset in _decode_session6.") showed, xfrm_decode_session was originally intended only for the receive path. IP6CB(skb)->nhoff is not set during transmission. Therefore, set the cb field in the skb to 0 before sending packets.