Filtered by vendor Redhat Subscriptions
Total 21354 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-42244 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: USB: serial: mos7840: fix crash on resume Since commit c49cfa917025 ("USB: serial: use generic method if no alternative is provided in usb serial layer"), USB serial core calls the generic resume implementation when the driver has not provided one. This can trigger a crash on resume with mos7840 since support for multiple read URBs was added back in 2011. Specifically, both port read URBs are now submitted on resume for open ports, but the context pointer of the second URB is left set to the core rather than mos7840 port structure. Fix this by implementing dedicated suspend and resume functions for mos7840. Tested with Delock 87414 USB 2.0 to 4x serial adapter. [ johan: analyse crash and rewrite commit message; set busy flag on resume; drop bulk-in check; drop unnecessary usb_kill_urb() ]
CVE-2024-42243 2 Linux, Redhat 2 Linux Kernel, Rhel Eus 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/filemap: make MAX_PAGECACHE_ORDER acceptable to xarray Patch series "mm/filemap: Limit page cache size to that supported by xarray", v2. Currently, xarray can't support arbitrary page cache size. More details can be found from the WARN_ON() statement in xas_split_alloc(). In our test whose code is attached below, we hit the WARN_ON() on ARM64 system where the base page size is 64KB and huge page size is 512MB. The issue was reported long time ago and some discussions on it can be found here [1]. [1] https://www.spinics.net/lists/linux-xfs/msg75404.html In order to fix the issue, we need to adjust MAX_PAGECACHE_ORDER to one supported by xarray and avoid PMD-sized page cache if needed. The code changes are suggested by David Hildenbrand. PATCH[1] adjusts MAX_PAGECACHE_ORDER to that supported by xarray PATCH[2-3] avoids PMD-sized page cache in the synchronous readahead path PATCH[4] avoids PMD-sized page cache for shmem files if needed Test program ============ # cat test.c #define _GNU_SOURCE #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <fcntl.h> #include <errno.h> #include <sys/syscall.h> #include <sys/mman.h> #define TEST_XFS_FILENAME "/tmp/data" #define TEST_SHMEM_FILENAME "/dev/shm/data" #define TEST_MEM_SIZE 0x20000000 int main(int argc, char **argv) { const char *filename; int fd = 0; void *buf = (void *)-1, *p; int pgsize = getpagesize(); int ret; if (pgsize != 0x10000) { fprintf(stderr, "64KB base page size is required\n"); return -EPERM; } system("echo force > /sys/kernel/mm/transparent_hugepage/shmem_enabled"); system("rm -fr /tmp/data"); system("rm -fr /dev/shm/data"); system("echo 1 > /proc/sys/vm/drop_caches"); /* Open xfs or shmem file */ filename = TEST_XFS_FILENAME; if (argc > 1 && !strcmp(argv[1], "shmem")) filename = TEST_SHMEM_FILENAME; fd = open(filename, O_CREAT | O_RDWR | O_TRUNC); if (fd < 0) { fprintf(stderr, "Unable to open <%s>\n", filename); return -EIO; } /* Extend file size */ ret = ftruncate(fd, TEST_MEM_SIZE); if (ret) { fprintf(stderr, "Error %d to ftruncate()\n", ret); goto cleanup; } /* Create VMA */ buf = mmap(NULL, TEST_MEM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (buf == (void *)-1) { fprintf(stderr, "Unable to mmap <%s>\n", filename); goto cleanup; } fprintf(stdout, "mapped buffer at 0x%p\n", buf); ret = madvise(buf, TEST_MEM_SIZE, MADV_HUGEPAGE); if (ret) { fprintf(stderr, "Unable to madvise(MADV_HUGEPAGE)\n"); goto cleanup; } /* Populate VMA */ ret = madvise(buf, TEST_MEM_SIZE, MADV_POPULATE_WRITE); if (ret) { fprintf(stderr, "Error %d to madvise(MADV_POPULATE_WRITE)\n", ret); goto cleanup; } /* Punch the file to enforce xarray split */ ret = fallocate(fd, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE, TEST_MEM_SIZE - pgsize, pgsize); if (ret) fprintf(stderr, "Error %d to fallocate()\n", ret); cleanup: if (buf != (void *)-1) munmap(buf, TEST_MEM_SIZE); if (fd > 0) close(fd); return 0; } # gcc test.c -o test # cat /proc/1/smaps | grep KernelPageSize | head -n 1 KernelPageSize: 64 kB # ./test shmem : ------------[ cut here ]------------ WARNING: CPU: 17 PID: 5253 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128 Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \ nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \ nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \ ip_set nf_tables rfkill nfnetlink vfat fat virtio_balloon \ drm fuse xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 \ virtio_net sha1_ce net_failover failover virtio_console virtio_blk \ dimlib virtio_mmio CPU: 17 PID: 5253 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #12 Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024 pstate: 83400005 (Nzcv daif +PAN -UAO +TC ---truncated---
CVE-2024-42241 2 Linux, Redhat 2 Linux Kernel, Rhel Eus 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/shmem: disable PMD-sized page cache if needed For shmem files, it's possible that PMD-sized page cache can't be supported by xarray. For example, 512MB page cache on ARM64 when the base page size is 64KB can't be supported by xarray. It leads to errors as the following messages indicate when this sort of xarray entry is split. WARNING: CPU: 34 PID: 7578 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128 Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 \ nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject \ nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \ ip_set rfkill nf_tables nfnetlink vfat fat virtio_balloon drm fuse xfs \ libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 sha1_ce virtio_net \ net_failover virtio_console virtio_blk failover dimlib virtio_mmio CPU: 34 PID: 7578 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #9 Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024 pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--) pc : xas_split_alloc+0xf8/0x128 lr : split_huge_page_to_list_to_order+0x1c4/0x720 sp : ffff8000882af5f0 x29: ffff8000882af5f0 x28: ffff8000882af650 x27: ffff8000882af768 x26: 0000000000000cc0 x25: 000000000000000d x24: ffff00010625b858 x23: ffff8000882af650 x22: ffffffdfc0900000 x21: 0000000000000000 x20: 0000000000000000 x19: ffffffdfc0900000 x18: 0000000000000000 x17: 0000000000000000 x16: 0000018000000000 x15: 52f8004000000000 x14: 0000e00000000000 x13: 0000000000002000 x12: 0000000000000020 x11: 52f8000000000000 x10: 52f8e1c0ffff6000 x9 : ffffbeb9619a681c x8 : 0000000000000003 x7 : 0000000000000000 x6 : ffff00010b02ddb0 x5 : ffffbeb96395e378 x4 : 0000000000000000 x3 : 0000000000000cc0 x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000 Call trace: xas_split_alloc+0xf8/0x128 split_huge_page_to_list_to_order+0x1c4/0x720 truncate_inode_partial_folio+0xdc/0x160 shmem_undo_range+0x2bc/0x6a8 shmem_fallocate+0x134/0x430 vfs_fallocate+0x124/0x2e8 ksys_fallocate+0x4c/0xa0 __arm64_sys_fallocate+0x24/0x38 invoke_syscall.constprop.0+0x7c/0xd8 do_el0_svc+0xb4/0xd0 el0_svc+0x44/0x1d8 el0t_64_sync_handler+0x134/0x150 el0t_64_sync+0x17c/0x180 Fix it by disabling PMD-sized page cache when HPAGE_PMD_ORDER is larger than MAX_PAGECACHE_ORDER. As Matthew Wilcox pointed, the page cache in a shmem file isn't represented by a multi-index entry and doesn't have this limitation when the xarry entry is split until commit 6b24ca4a1a8d ("mm: Use multi-index entries in the page cache").
CVE-2024-42240 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/bhi: Avoid warning in #DB handler due to BHI mitigation When BHI mitigation is enabled, if SYSENTER is invoked with the TF flag set then entry_SYSENTER_compat() uses CLEAR_BRANCH_HISTORY and calls the clear_bhb_loop() before the TF flag is cleared. This causes the #DB handler (exc_debug_kernel()) to issue a warning because single-step is used outside the entry_SYSENTER_compat() function. To address this issue, entry_SYSENTER_compat() should use CLEAR_BRANCH_HISTORY after making sure the TF flag is cleared. The problem can be reproduced with the following sequence: $ cat sysenter_step.c int main() { asm("pushf; pop %ax; bts $8,%ax; push %ax; popf; sysenter"); } $ gcc -o sysenter_step sysenter_step.c $ ./sysenter_step Segmentation fault (core dumped) The program is expected to crash, and the #DB handler will issue a warning. Kernel log: WARNING: CPU: 27 PID: 7000 at arch/x86/kernel/traps.c:1009 exc_debug_kernel+0xd2/0x160 ... RIP: 0010:exc_debug_kernel+0xd2/0x160 ... Call Trace: <#DB> ? show_regs+0x68/0x80 ? __warn+0x8c/0x140 ? exc_debug_kernel+0xd2/0x160 ? report_bug+0x175/0x1a0 ? handle_bug+0x44/0x90 ? exc_invalid_op+0x1c/0x70 ? asm_exc_invalid_op+0x1f/0x30 ? exc_debug_kernel+0xd2/0x160 exc_debug+0x43/0x50 asm_exc_debug+0x1e/0x40 RIP: 0010:clear_bhb_loop+0x0/0xb0 ... </#DB> <TASK> ? entry_SYSENTER_compat_after_hwframe+0x6e/0x8d </TASK> [ bp: Massage commit message. ]
CVE-2024-42238 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Return error if block header overflows file Return an error from cs_dsp_power_up() if a block header is longer than the amount of data left in the file. The previous code in cs_dsp_load() and cs_dsp_load_coeff() would loop while there was enough data left in the file for a valid region. This protected against overrunning the end of the file data, but it didn't abort the file processing with an error.
CVE-2024-42237 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Validate payload length before processing block Move the payload length check in cs_dsp_load() and cs_dsp_coeff_load() to be done before the block is processed. The check that the length of a block payload does not exceed the number of remaining bytes in the firwmware file buffer was being done near the end of the loop iteration. However, some code before that check used the length field without validating it.
CVE-2024-42228 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Using uninitialized value *size when calling amdgpu_vce_cs_reloc Initialize the size before calling amdgpu_vce_cs_reloc, such as case 0x03000001. V2: To really improve the handling we would actually need to have a separate value of 0xffffffff.(Christian)
CVE-2024-42225 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-05 7.5 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: replace skb_put with skb_put_zero Avoid potentially reusing uninitialized data
CVE-2024-42159 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: scsi: mpi3mr: Sanitise num_phys Information is stored in mr_sas_port->phy_mask, values larger then size of this field shouldn't be allowed.
CVE-2024-42154 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2024-11-05 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: tcp_metrics: validate source addr length I don't see anything checking that TCP_METRICS_ATTR_SADDR_IPV4 is at least 4 bytes long, and the policy doesn't have an entry for this attribute at all (neither does it for IPv6 but v6 is manually validated).
CVE-2024-42152 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2024-11-05 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: nvmet: fix a possible leak when destroy a ctrl during qp establishment In nvmet_sq_destroy we capture sq->ctrl early and if it is non-NULL we know that a ctrl was allocated (in the admin connect request handler) and we need to release pending AERs, clear ctrl->sqs and sq->ctrl (for nvme-loop primarily), and drop the final reference on the ctrl. However, a small window is possible where nvmet_sq_destroy starts (as a result of the client giving up and disconnecting) concurrently with the nvme admin connect cmd (which may be in an early stage). But *before* kill_and_confirm of sq->ref (i.e. the admin connect managed to get an sq live reference). In this case, sq->ctrl was allocated however after it was captured in a local variable in nvmet_sq_destroy. This prevented the final reference drop on the ctrl. Solve this by re-capturing the sq->ctrl after all inflight request has completed, where for sure sq->ctrl reference is final, and move forward based on that. This issue was observed in an environment with many hosts connecting multiple ctrls simoutanuosly, creating a delay in allocating a ctrl leading up to this race window.
CVE-2024-42141 1 Redhat 1 Enterprise Linux 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: ISO: Check socket flag instead of hcon This fixes the following Smatch static checker warning: net/bluetooth/iso.c:1364 iso_sock_recvmsg() error: we previously assumed 'pi->conn->hcon' could be null (line 1359) net/bluetooth/iso.c 1347 static int iso_sock_recvmsg(struct socket *sock, struct msghdr *msg, 1348 size_t len, int flags) 1349 { 1350 struct sock *sk = sock->sk; 1351 struct iso_pinfo *pi = iso_pi(sk); 1352 1353 BT_DBG("sk %p", sk); 1354 1355 if (test_and_clear_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags)) { 1356 lock_sock(sk); 1357 switch (sk->sk_state) { 1358 case BT_CONNECT2: 1359 if (pi->conn->hcon && ^^^^^^^^^^^^^^ If ->hcon is NULL 1360 test_bit(HCI_CONN_PA_SYNC, &pi->conn->hcon->flags)) { 1361 iso_conn_big_sync(sk); 1362 sk->sk_state = BT_LISTEN; 1363 } else { --> 1364 iso_conn_defer_accept(pi->conn->hcon); ^^^^^^^^^^^^^^ then we're toast 1365 sk->sk_state = BT_CONFIG; 1366 } 1367 release_sock(sk); 1368 return 0; 1369 case BT_CONNECTED: 1370 if (test_bit(BT_SK_PA_SYNC,
CVE-2024-42139 1 Redhat 1 Rhel Eus 2024-11-05 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: ice: Fix improper extts handling Extts events are disabled and enabled by the application ts2phc. However, in case where the driver is removed when the application is running, a specific extts event remains enabled and can cause a kernel crash. As a side effect, when the driver is reloaded and application is started again, remaining extts event for the channel from a previous run will keep firing and the message "extts on unexpected channel" might be printed to the user. To avoid that, extts events shall be disabled when PTP is released.
CVE-2024-42132 1 Redhat 1 Enterprise Linux 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bluetooth/hci: disallow setting handle bigger than HCI_CONN_HANDLE_MAX Syzbot hit warning in hci_conn_del() caused by freeing handle that was not allocated using ida allocator. This is caused by handle bigger than HCI_CONN_HANDLE_MAX passed by hci_le_big_sync_established_evt(), which makes code think it's unset connection. Add same check for handle upper bound as in hci_conn_set_handle() to prevent warning.
CVE-2024-42131 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2024-11-05 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: mm: avoid overflows in dirty throttling logic The dirty throttling logic is interspersed with assumptions that dirty limits in PAGE_SIZE units fit into 32-bit (so that various multiplications fit into 64-bits). If limits end up being larger, we will hit overflows, possible divisions by 0 etc. Fix these problems by never allowing so large dirty limits as they have dubious practical value anyway. For dirty_bytes / dirty_background_bytes interfaces we can just refuse to set so large limits. For dirty_ratio / dirty_background_ratio it isn't so simple as the dirty limit is computed from the amount of available memory which can change due to memory hotplug etc. So when converting dirty limits from ratios to numbers of pages, we just don't allow the result to exceed UINT_MAX. This is root-only triggerable problem which occurs when the operator sets dirty limits to >16 TB.
CVE-2024-42125 1 Redhat 1 Enterprise Linux 2024-11-05 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: fw: scan offload prohibit all 6 GHz channel if no 6 GHz sband We have some policy via BIOS to block uses of 6 GHz. In this case, 6 GHz sband will be NULL even if it is WiFi 7 chip. So, add NULL handling here to avoid crash.
CVE-2024-42124 1 Redhat 1 Enterprise Linux 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: qedf: Make qedf_execute_tmf() non-preemptible Stop calling smp_processor_id() from preemptible code in qedf_execute_tmf90. This results in BUG_ON() when running an RT kernel. [ 659.343280] BUG: using smp_processor_id() in preemptible [00000000] code: sg_reset/3646 [ 659.343282] caller is qedf_execute_tmf+0x8b/0x360 [qedf]
CVE-2024-42123 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-05 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix double free err_addr pointer warnings In amdgpu_umc_bad_page_polling_timeout, the amdgpu_umc_handle_bad_pages will be run many times so that double free err_addr in some special case. So set the err_addr to NULL to avoid the warnings.
CVE-2024-42114 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-05 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: restrict NL80211_ATTR_TXQ_QUANTUM values syzbot is able to trigger softlockups, setting NL80211_ATTR_TXQ_QUANTUM to 2^31. We had a similar issue in sch_fq, fixed with commit d9e15a273306 ("pkt_sched: fq: do not accept silly TCA_FQ_QUANTUM") watchdog: BUG: soft lockup - CPU#1 stuck for 26s! [kworker/1:0:24] Modules linked in: irq event stamp: 131135 hardirqs last enabled at (131134): [<ffff80008ae8778c>] __exit_to_kernel_mode arch/arm64/kernel/entry-common.c:85 [inline] hardirqs last enabled at (131134): [<ffff80008ae8778c>] exit_to_kernel_mode+0xdc/0x10c arch/arm64/kernel/entry-common.c:95 hardirqs last disabled at (131135): [<ffff80008ae85378>] __el1_irq arch/arm64/kernel/entry-common.c:533 [inline] hardirqs last disabled at (131135): [<ffff80008ae85378>] el1_interrupt+0x24/0x68 arch/arm64/kernel/entry-common.c:551 softirqs last enabled at (125892): [<ffff80008907e82c>] neigh_hh_init net/core/neighbour.c:1538 [inline] softirqs last enabled at (125892): [<ffff80008907e82c>] neigh_resolve_output+0x268/0x658 net/core/neighbour.c:1553 softirqs last disabled at (125896): [<ffff80008904166c>] local_bh_disable+0x10/0x34 include/linux/bottom_half.h:19 CPU: 1 PID: 24 Comm: kworker/1:0 Not tainted 6.9.0-rc7-syzkaller-gfda5695d692c #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 Workqueue: mld mld_ifc_work pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __list_del include/linux/list.h:195 [inline] pc : __list_del_entry include/linux/list.h:218 [inline] pc : list_move_tail include/linux/list.h:310 [inline] pc : fq_tin_dequeue include/net/fq_impl.h:112 [inline] pc : ieee80211_tx_dequeue+0x6b8/0x3b4c net/mac80211/tx.c:3854 lr : __list_del_entry include/linux/list.h:218 [inline] lr : list_move_tail include/linux/list.h:310 [inline] lr : fq_tin_dequeue include/net/fq_impl.h:112 [inline] lr : ieee80211_tx_dequeue+0x67c/0x3b4c net/mac80211/tx.c:3854 sp : ffff800093d36700 x29: ffff800093d36a60 x28: ffff800093d36960 x27: dfff800000000000 x26: ffff0000d800ad50 x25: ffff0000d800abe0 x24: ffff0000d800abf0 x23: ffff0000e0032468 x22: ffff0000e00324d4 x21: ffff0000d800abf0 x20: ffff0000d800abf8 x19: ffff0000d800abf0 x18: ffff800093d363c0 x17: 000000000000d476 x16: ffff8000805519dc x15: ffff7000127a6cc8 x14: 1ffff000127a6cc8 x13: 0000000000000004 x12: ffffffffffffffff x11: ffff7000127a6cc8 x10: 0000000000ff0100 x9 : 0000000000000000 x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000 x5 : ffff80009287aa08 x4 : 0000000000000008 x3 : ffff80008034c7fc x2 : ffff0000e0032468 x1 : 00000000da0e46b8 x0 : ffff0000e0032470 Call trace: __list_del include/linux/list.h:195 [inline] __list_del_entry include/linux/list.h:218 [inline] list_move_tail include/linux/list.h:310 [inline] fq_tin_dequeue include/net/fq_impl.h:112 [inline] ieee80211_tx_dequeue+0x6b8/0x3b4c net/mac80211/tx.c:3854 wake_tx_push_queue net/mac80211/util.c:294 [inline] ieee80211_handle_wake_tx_queue+0x118/0x274 net/mac80211/util.c:315 drv_wake_tx_queue net/mac80211/driver-ops.h:1350 [inline] schedule_and_wake_txq net/mac80211/driver-ops.h:1357 [inline] ieee80211_queue_skb+0x18e8/0x2244 net/mac80211/tx.c:1664 ieee80211_tx+0x260/0x400 net/mac80211/tx.c:1966 ieee80211_xmit+0x278/0x354 net/mac80211/tx.c:2062 __ieee80211_subif_start_xmit+0xab8/0x122c net/mac80211/tx.c:4338 ieee80211_subif_start_xmit+0xe0/0x438 net/mac80211/tx.c:4532 __netdev_start_xmit include/linux/netdevice.h:4903 [inline] netdev_start_xmit include/linux/netdevice.h:4917 [inline] xmit_one net/core/dev.c:3531 [inline] dev_hard_start_xmit+0x27c/0x938 net/core/dev.c:3547 __dev_queue_xmit+0x1678/0x33fc net/core/dev.c:4341 dev_queue_xmit include/linux/netdevice.h:3091 [inline] neigh_resolve_output+0x558/0x658 net/core/neighbour.c:1563 neigh_output include/net/neighbour.h:542 [inline] ip6_fini ---truncated---
CVE-2024-42110 1 Redhat 1 Enterprise Linux 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: ntb_netdev: Move ntb_netdev_rx_handler() to call netif_rx() from __netif_rx() The following is emitted when using idxd (DSA) dmanegine as the data mover for ntb_transport that ntb_netdev uses. [74412.546922] BUG: using smp_processor_id() in preemptible [00000000] code: irq/52-idxd-por/14526 [74412.556784] caller is netif_rx_internal+0x42/0x130 [74412.562282] CPU: 6 PID: 14526 Comm: irq/52-idxd-por Not tainted 6.9.5 #5 [74412.569870] Hardware name: Intel Corporation ArcherCity/ArcherCity, BIOS EGSDCRB1.E9I.1752.P05.2402080856 02/08/2024 [74412.581699] Call Trace: [74412.584514] <TASK> [74412.586933] dump_stack_lvl+0x55/0x70 [74412.591129] check_preemption_disabled+0xc8/0xf0 [74412.596374] netif_rx_internal+0x42/0x130 [74412.600957] __netif_rx+0x20/0xd0 [74412.604743] ntb_netdev_rx_handler+0x66/0x150 [ntb_netdev] [74412.610985] ntb_complete_rxc+0xed/0x140 [ntb_transport] [74412.617010] ntb_rx_copy_callback+0x53/0x80 [ntb_transport] [74412.623332] idxd_dma_complete_txd+0xe3/0x160 [idxd] [74412.628963] idxd_wq_thread+0x1a6/0x2b0 [idxd] [74412.634046] irq_thread_fn+0x21/0x60 [74412.638134] ? irq_thread+0xa8/0x290 [74412.642218] irq_thread+0x1a0/0x290 [74412.646212] ? __pfx_irq_thread_fn+0x10/0x10 [74412.651071] ? __pfx_irq_thread_dtor+0x10/0x10 [74412.656117] ? __pfx_irq_thread+0x10/0x10 [74412.660686] kthread+0x100/0x130 [74412.664384] ? __pfx_kthread+0x10/0x10 [74412.668639] ret_from_fork+0x31/0x50 [74412.672716] ? __pfx_kthread+0x10/0x10 [74412.676978] ret_from_fork_asm+0x1a/0x30 [74412.681457] </TASK> The cause is due to the idxd driver interrupt completion handler uses threaded interrupt and the threaded handler is not hard or soft interrupt context. However __netif_rx() can only be called from interrupt context. Change the call to netif_rx() in order to allow completion via normal context for dmaengine drivers that utilize threaded irq handling. While the following commit changed from netif_rx() to __netif_rx(), baebdf48c360 ("net: dev: Makes sure netif_rx() can be invoked in any context."), the change should've been a noop instead. However, the code precedes this fix should've been using netif_rx_ni() or netif_rx_any_context().