CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
watchdog: rzg2l_wdt: Fix 32bit overflow issue
The value of timer_cycle_us can be 0 due to 32bit overflow.
For eg:- If we assign the counter value "0xfff" for computing
maxval.
This patch fixes this issue by appending ULL to 1024, so that
it is promoted to 64bit.
This patch also fixes the warning message, 'watchdog: Invalid min and
max timeout values, resetting to 0!'. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Off by one in dm_dmub_outbox1_low_irq()
The > ARRAY_SIZE() should be >= ARRAY_SIZE() to prevent an out of bounds
access. |
In the Linux kernel, the following vulnerability has been resolved:
NFSD: prevent underflow in nfssvc_decode_writeargs()
Smatch complains:
fs/nfsd/nfsxdr.c:341 nfssvc_decode_writeargs()
warn: no lower bound on 'args->len'
Change the type to unsigned to prevent this issue. |
In the Linux kernel, the following vulnerability has been resolved:
NFSD: prevent integer overflow on 32 bit systems
On a 32 bit system, the "len * sizeof(*p)" operation can have an
integer overflow. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: Prevent some integer underflows
My static checker complains that:
drivers/infiniband/hw/irdma/ctrl.c:3605 irdma_sc_ceq_init()
warn: can subtract underflow 'info->dev->hmc_fpm_misc.max_ceqs'?
It appears that "info->dev->hmc_fpm_misc.max_ceqs" comes from the firmware
in irdma_sc_parse_fpm_query_buf() so, yes, there is a chance that it could
be zero. Even if we trust the firmware, it's easy enough to change the
condition just as a hardenning measure. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/nldev: Prevent underflow in nldev_stat_set_counter_dynamic_doit()
This code checks "index" for an upper bound but it does not check for
negatives. Change the type to unsigned to prevent underflows. |
In the Linux kernel, the following vulnerability has been resolved:
libbpf: Handle size overflow for ringbuf mmap
The maximum size of ringbuf is 2GB on x86-64 host, so 2 * max_entries
will overflow u32 when mapping producer page and data pages. Only
casting max_entries to size_t is not enough, because for 32-bits
application on 64-bits kernel the size of read-only mmap region
also could overflow size_t.
So fixing it by casting the size of read-only mmap region into a __u64
and checking whether or not there will be overflow during mmap. |
In the Linux kernel, the following vulnerability has been resolved:
media: v4l2-dv-timings.c: fix too strict blanking sanity checks
Sanity checks were added to verify the v4l2_bt_timings blanking fields
in order to avoid integer overflows when userspace passes weird values.
But that assumed that userspace would correctly fill in the front porch,
backporch and sync values, but sometimes all you know is the total
blanking, which is then assigned to just one of these fields.
And that can fail with these checks.
So instead set a maximum for the total horizontal and vertical
blanking and check that each field remains below that.
That is still sufficient to avoid integer overflows, but it also
allows for more flexibility in how userspace fills in these fields. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix u8 overflow
By keep sending L2CAP_CONF_REQ packets, chan->num_conf_rsp increases
multiple times and eventually it will wrap around the maximum number
(i.e., 255).
This patch prevents this by adding a boundary check with
L2CAP_MAX_CONF_RSP
Btmon log:
Bluetooth monitor ver 5.64
= Note: Linux version 6.1.0-rc2 (x86_64) 0.264594
= Note: Bluetooth subsystem version 2.22 0.264636
@ MGMT Open: btmon (privileged) version 1.22 {0x0001} 0.272191
= New Index: 00:00:00:00:00:00 (Primary,Virtual,hci0) [hci0] 13.877604
@ RAW Open: 9496 (privileged) version 2.22 {0x0002} 13.890741
= Open Index: 00:00:00:00:00:00 [hci0] 13.900426
(...)
> ACL Data RX: Handle 200 flags 0x00 dlen 1033 #32 [hci0] 14.273106
invalid packet size (12 != 1033)
08 00 01 00 02 01 04 00 01 10 ff ff ............
> ACL Data RX: Handle 200 flags 0x00 dlen 1547 #33 [hci0] 14.273561
invalid packet size (14 != 1547)
0a 00 01 00 04 01 06 00 40 00 00 00 00 00 ........@.....
> ACL Data RX: Handle 200 flags 0x00 dlen 2061 #34 [hci0] 14.274390
invalid packet size (16 != 2061)
0c 00 01 00 04 01 08 00 40 00 00 00 00 00 00 04 ........@.......
> ACL Data RX: Handle 200 flags 0x00 dlen 2061 #35 [hci0] 14.274932
invalid packet size (16 != 2061)
0c 00 01 00 04 01 08 00 40 00 00 00 07 00 03 00 ........@.......
= bluetoothd: Bluetooth daemon 5.43 14.401828
> ACL Data RX: Handle 200 flags 0x00 dlen 1033 #36 [hci0] 14.275753
invalid packet size (12 != 1033)
08 00 01 00 04 01 04 00 40 00 00 00 ........@... |
In the Linux kernel, the following vulnerability has been resolved:
CDC-NCM: avoid overflow in sanity checking
A broken device may give an extreme offset like 0xFFF0
and a reasonable length for a fragment. In the sanity
check as formulated now, this will create an integer
overflow, defeating the sanity check. Both offset
and offset + len need to be checked in such a manner
that no overflow can occur.
And those quantities should be unsigned. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: rndis: prevent integer overflow in rndis_set_response()
If "BufOffset" is very large the "BufOffset + 8" operation can have an
integer overflow. |
In the Linux kernel, the following vulnerability has been resolved:
vt_ioctl: fix array_index_nospec in vt_setactivate
array_index_nospec ensures that an out-of-bounds value is set to zero
on the transient path. Decreasing the value by one afterwards causes
a transient integer underflow. vsa.console should be decreased first
and then sanitized with array_index_nospec.
Kasper Acknowledgements: Jakob Koschel, Brian Johannesmeyer, Kaveh
Razavi, Herbert Bos, Cristiano Giuffrida from the VUSec group at VU
Amsterdam. |
In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau: fix off by one in BIOS boundary checking
Bounds checking when parsing init scripts embedded in the BIOS reject
access to the last byte. This causes driver initialization to fail on
Apple eMac's with GeForce 2 MX GPUs, leaving the system with no working
console.
This is probably only seen on OpenFirmware machines like PowerPC Macs
because the BIOS image provided by OF is only the used parts of the ROM,
not a power-of-two blocks read from PCI directly so PCs always have
empty bytes at the end that are never accessed. |
In the Linux kernel, the following vulnerability has been resolved:
of: fdt: fix off-by-one error in unflatten_dt_nodes()
Commit 78c44d910d3e ("drivers/of: Fix depth when unflattening devicetree")
forgot to fix up the depth check in the loop body in unflatten_dt_nodes()
which makes it possible to overflow the nps[] buffer...
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool. |
In the Linux kernel, the following vulnerability has been resolved:
arm64: topology: fix possible overflow in amu_fie_setup()
cpufreq_get_hw_max_freq() returns max frequency in kHz as *unsigned int*,
while freq_inv_set_max_ratio() gets passed this frequency in Hz as 'u64'.
Multiplying max frequency by 1000 can potentially result in overflow --
multiplying by 1000ULL instead should avoid that...
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool. |
In the Linux kernel, the following vulnerability has been resolved:
iommu/iova: Fix alloc iova overflows issue
In __alloc_and_insert_iova_range, there is an issue that retry_pfn
overflows. The value of iovad->anchor.pfn_hi is ~0UL, then when
iovad->cached_node is iovad->anchor, curr_iova->pfn_hi + 1 will
overflow. As a result, if the retry logic is executed, low_pfn is
updated to 0, and then new_pfn < low_pfn returns false to make the
allocation successful.
This issue occurs in the following two situations:
1. The first iova size exceeds the domain size. When initializing
iova domain, iovad->cached_node is assigned as iovad->anchor. For
example, the iova domain size is 10M, start_pfn is 0x1_F000_0000,
and the iova size allocated for the first time is 11M. The
following is the log information, new->pfn_lo is smaller than
iovad->cached_node.
Example log as follows:
[ 223.798112][T1705487] sh: [name:iova&]__alloc_and_insert_iova_range
start_pfn:0x1f0000,retry_pfn:0x0,size:0xb00,limit_pfn:0x1f0a00
[ 223.799590][T1705487] sh: [name:iova&]__alloc_and_insert_iova_range
success start_pfn:0x1f0000,new->pfn_lo:0x1efe00,new->pfn_hi:0x1f08ff
2. The node with the largest iova->pfn_lo value in the iova domain
is deleted, iovad->cached_node will be updated to iovad->anchor,
and then the alloc iova size exceeds the maximum iova size that can
be allocated in the domain.
After judging that retry_pfn is less than limit_pfn, call retry_pfn+1
to fix the overflow issue. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: don't return unset power in ieee80211_get_tx_power()
We can get a UBSAN warning if ieee80211_get_tx_power() returns the
INT_MIN value mac80211 internally uses for "unset power level".
UBSAN: signed-integer-overflow in net/wireless/nl80211.c:3816:5
-2147483648 * 100 cannot be represented in type 'int'
CPU: 0 PID: 20433 Comm: insmod Tainted: G WC OE
Call Trace:
dump_stack+0x74/0x92
ubsan_epilogue+0x9/0x50
handle_overflow+0x8d/0xd0
__ubsan_handle_mul_overflow+0xe/0x10
nl80211_send_iface+0x688/0x6b0 [cfg80211]
[...]
cfg80211_register_wdev+0x78/0xb0 [cfg80211]
cfg80211_netdev_notifier_call+0x200/0x620 [cfg80211]
[...]
ieee80211_if_add+0x60e/0x8f0 [mac80211]
ieee80211_register_hw+0xda5/0x1170 [mac80211]
In this case, simply return an error instead, to indicate
that no data is available. |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix underflow in second superblock position calculations
Macro NILFS_SB2_OFFSET_BYTES, which computes the position of the second
superblock, underflows when the argument device size is less than 4096
bytes. Therefore, when using this macro, it is necessary to check in
advance that the device size is not less than a lower limit, or at least
that underflow does not occur.
The current nilfs2 implementation lacks this check, causing out-of-bound
block access when mounting devices smaller than 4096 bytes:
I/O error, dev loop0, sector 36028797018963960 op 0x0:(READ) flags 0x0
phys_seg 1 prio class 2
NILFS (loop0): unable to read secondary superblock (blocksize = 1024)
In addition, when trying to resize the filesystem to a size below 4096
bytes, this underflow occurs in nilfs_resize_fs(), passing a huge number
of segments to nilfs_sufile_resize(), corrupting parameters such as the
number of segments in superblocks. This causes excessive loop iterations
in nilfs_sufile_resize() during a subsequent resize ioctl, causing
semaphore ns_segctor_sem to block for a long time and hang the writer
thread:
INFO: task segctord:5067 blocked for more than 143 seconds.
Not tainted 6.2.0-rc8-syzkaller-00015-gf6feea56f66d #0
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:segctord state:D stack:23456 pid:5067 ppid:2
flags:0x00004000
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5293 [inline]
__schedule+0x1409/0x43f0 kernel/sched/core.c:6606
schedule+0xc3/0x190 kernel/sched/core.c:6682
rwsem_down_write_slowpath+0xfcf/0x14a0 kernel/locking/rwsem.c:1190
nilfs_transaction_lock+0x25c/0x4f0 fs/nilfs2/segment.c:357
nilfs_segctor_thread_construct fs/nilfs2/segment.c:2486 [inline]
nilfs_segctor_thread+0x52f/0x1140 fs/nilfs2/segment.c:2570
kthread+0x270/0x300 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308
</TASK>
...
Call Trace:
<TASK>
folio_mark_accessed+0x51c/0xf00 mm/swap.c:515
__nilfs_get_page_block fs/nilfs2/page.c:42 [inline]
nilfs_grab_buffer+0x3d3/0x540 fs/nilfs2/page.c:61
nilfs_mdt_submit_block+0xd7/0x8f0 fs/nilfs2/mdt.c:121
nilfs_mdt_read_block+0xeb/0x430 fs/nilfs2/mdt.c:176
nilfs_mdt_get_block+0x12d/0xbb0 fs/nilfs2/mdt.c:251
nilfs_sufile_get_segment_usage_block fs/nilfs2/sufile.c:92 [inline]
nilfs_sufile_truncate_range fs/nilfs2/sufile.c:679 [inline]
nilfs_sufile_resize+0x7a3/0x12b0 fs/nilfs2/sufile.c:777
nilfs_resize_fs+0x20c/0xed0 fs/nilfs2/super.c:422
nilfs_ioctl_resize fs/nilfs2/ioctl.c:1033 [inline]
nilfs_ioctl+0x137c/0x2440 fs/nilfs2/ioctl.c:1301
...
This fixes these issues by inserting appropriate minimum device size
checks or anti-underflow checks, depending on where the macro is used. |
In the Linux kernel, the following vulnerability has been resolved:
accel/qaic: Fix integer overflow in qaic_validate_req()
These are u64 variables that come from the user via
qaic_attach_slice_bo_ioctl(). Use check_add_overflow() to ensure that
the math doesn't have an integer wrapping bug. |
In the Linux kernel, the following vulnerability has been resolved:
xsk: fix an integer overflow in xp_create_and_assign_umem()
Since the i and pool->chunk_size variables are of type 'u32',
their product can wrap around and then be cast to 'u64'.
This can lead to two different XDP buffers pointing to the same
memory area.
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with SVACE. |