Filtered by vendor Linux
Subscriptions
Total
10230 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2017-7308 | 2 Linux, Redhat | 4 Linux Kernel, Enterprise Linux, Enterprise Mrg and 1 more | 2025-04-20 | 7.8 High |
The packet_set_ring function in net/packet/af_packet.c in the Linux kernel through 4.10.6 does not properly validate certain block-size data, which allows local users to cause a denial of service (integer signedness error and out-of-bounds write), or gain privileges (if the CAP_NET_RAW capability is held), via crafted system calls. | ||||
CVE-2017-17852 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-04-20 | 7.8 High |
kernel/bpf/verifier.c in the Linux kernel through 4.14.8 allows local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging mishandling of 32-bit ALU ops. | ||||
CVE-2017-17854 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-04-20 | 7.8 High |
kernel/bpf/verifier.c in the Linux kernel through 4.14.8 allows local users to cause a denial of service (integer overflow and memory corruption) or possibly have unspecified other impact by leveraging unrestricted integer values for pointer arithmetic. | ||||
CVE-2017-1105 | 3 Ibm, Linux, Microsoft | 8 Data Server Client, Data Server Driver For Odbc And Cli, Data Server Driver Package and 5 more | 2025-04-20 | N/A |
IBM DB2 for Linux, UNIX and Windows 9.2, 10.1, 10.5, and 11.1 (includes DB2 Connect Server) is vulnerable to a buffer overflow that could allow a local user to overwrite DB2 files or cause a denial of service. IBM X-Force ID: 120668. | ||||
CVE-2010-5328 | 1 Linux | 1 Linux Kernel | 2025-04-20 | N/A |
include/linux/init_task.h in the Linux kernel before 2.6.35 does not prevent signals with a process group ID of zero from reaching the swapper process, which allows local users to cause a denial of service (system crash) by leveraging access to this process group. | ||||
CVE-2010-5329 | 1 Linux | 1 Linux Kernel | 2025-04-20 | N/A |
The video_usercopy function in drivers/media/video/v4l2-ioctl.c in the Linux kernel before 2.6.39 relies on the count value of a v4l2_ext_controls data structure to determine a kmalloc size, which might allow local users to cause a denial of service (memory consumption) via a large value. | ||||
CVE-2017-1000252 | 2 Linux, Redhat | 4 Linux Kernel, Enterprise Linux, Rhel Eus and 1 more | 2025-04-20 | N/A |
The KVM subsystem in the Linux kernel through 4.13.3 allows guest OS users to cause a denial of service (assertion failure, and hypervisor hang or crash) via an out-of bounds guest_irq value, related to arch/x86/kvm/vmx.c and virt/kvm/eventfd.c. | ||||
CVE-2017-1000251 | 4 Debian, Linux, Nvidia and 1 more | 17 Debian Linux, Linux Kernel, Jetson Tk1 and 14 more | 2025-04-20 | 8.0 High |
The native Bluetooth stack in the Linux Kernel (BlueZ), starting at the Linux kernel version 2.6.32 and up to and including 4.13.1, are vulnerable to a stack overflow vulnerability in the processing of L2CAP configuration responses resulting in Remote code execution in kernel space. | ||||
CVE-2017-1000253 | 3 Centos, Linux, Redhat | 8 Centos, Linux Kernel, Enterprise Linux and 5 more | 2025-04-20 | 7.8 High |
Linux distributions that have not patched their long-term kernels with https://git.kernel.org/linus/a87938b2e246b81b4fb713edb371a9fa3c5c3c86 (committed on April 14, 2015). This kernel vulnerability was fixed in April 2015 by commit a87938b2e246b81b4fb713edb371a9fa3c5c3c86 (backported to Linux 3.10.77 in May 2015), but it was not recognized as a security threat. With CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE enabled, and a normal top-down address allocation strategy, load_elf_binary() will attempt to map a PIE binary into an address range immediately below mm->mmap_base. Unfortunately, load_elf_ binary() does not take account of the need to allocate sufficient space for the entire binary which means that, while the first PT_LOAD segment is mapped below mm->mmap_base, the subsequent PT_LOAD segment(s) end up being mapped above mm->mmap_base into the are that is supposed to be the "gap" between the stack and the binary. | ||||
CVE-2017-1000255 | 3 Ibm, Linux, Redhat | 4 Powerpc Power8, Powerpc Power9, Linux Kernel and 1 more | 2025-04-20 | N/A |
On Linux running on PowerPC hardware (Power8 or later) a user process can craft a signal frame and then do a sigreturn so that the kernel will take an exception (interrupt), and use the r1 value *from the signal frame* as the kernel stack pointer. As part of the exception entry the content of the signal frame is written to the kernel stack, allowing an attacker to overwrite arbitrary locations with arbitrary values. The exception handling does produce an oops, and a panic if panic_on_oops=1, but only after kernel memory has been over written. This flaw was introduced in commit: "5d176f751ee3 (powerpc: tm: Enable transactional memory (TM) lazily for userspace)" which was merged upstream into v4.9-rc1. Please note that kernels built with CONFIG_PPC_TRANSACTIONAL_MEM=n are not vulnerable. | ||||
CVE-2017-1000363 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-04-20 | 7.8 High |
Linux drivers/char/lp.c Out-of-Bounds Write. Due to a missing bounds check, and the fact that parport_ptr integer is static, a 'secure boot' kernel command line adversary (can happen due to bootloader vulns, e.g. Google Nexus 6's CVE-2016-10277, where due to a vulnerability the adversary has partial control over the command line) can overflow the parport_nr array in the following code, by appending many (>LP_NO) 'lp=none' arguments to the command line. | ||||
CVE-2017-1000365 | 1 Linux | 1 Linux Kernel | 2025-04-20 | 7.8 High |
The Linux Kernel imposes a size restriction on the arguments and environmental strings passed through RLIMIT_STACK/RLIM_INFINITY (1/4 of the size), but does not take the argument and environment pointers into account, which allows attackers to bypass this limitation. This affects Linux Kernel versions 4.11.5 and earlier. It appears that this feature was introduced in the Linux Kernel version 2.6.23. | ||||
CVE-2017-1000371 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-04-20 | 7.8 High |
The offset2lib patch as used by the Linux Kernel contains a vulnerability, if RLIMIT_STACK is set to RLIM_INFINITY and 1 Gigabyte of memory is allocated (the maximum under the 1/4 restriction) then the stack will be grown down to 0x80000000, and as the PIE binary is mapped above 0x80000000 the minimum distance between the end of the PIE binary's read-write segment and the start of the stack becomes small enough that the stack guard page can be jumped over by an attacker. This affects Linux Kernel version 4.11.5. This is a different issue than CVE-2017-1000370 and CVE-2017-1000365. This issue appears to be limited to i386 based systems. | ||||
CVE-2017-1000380 | 2 Linux, Redhat | 4 Linux Kernel, Enterprise Linux, Enterprise Mrg and 1 more | 2025-04-20 | N/A |
sound/core/timer.c in the Linux kernel before 4.11.5 is vulnerable to a data race in the ALSA /dev/snd/timer driver resulting in local users being able to read information belonging to other users, i.e., uninitialized memory contents may be disclosed when a read and an ioctl happen at the same time. | ||||
CVE-2017-1000405 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-04-20 | 7.0 High |
The Linux Kernel versions 2.6.38 through 4.14 have a problematic use of pmd_mkdirty() in the touch_pmd() function inside the THP implementation. touch_pmd() can be reached by get_user_pages(). In such case, the pmd will become dirty. This scenario breaks the new can_follow_write_pmd()'s logic - pmd can become dirty without going through a COW cycle. This bug is not as severe as the original "Dirty cow" because an ext4 file (or any other regular file) cannot be mapped using THP. Nevertheless, it does allow us to overwrite read-only huge pages. For example, the zero huge page and sealed shmem files can be overwritten (since their mapping can be populated using THP). Note that after the first write page-fault to the zero page, it will be replaced with a new fresh (and zeroed) thp. | ||||
CVE-2017-17448 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Extras Rt | 2025-04-20 | N/A |
net/netfilter/nfnetlink_cthelper.c in the Linux kernel through 4.14.4 does not require the CAP_NET_ADMIN capability for new, get, and del operations, which allows local users to bypass intended access restrictions because the nfnl_cthelper_list data structure is shared across all net namespaces. | ||||
CVE-2017-1000407 | 4 Canonical, Debian, Linux and 1 more | 13 Ubuntu Linux, Debian Linux, Linux Kernel and 10 more | 2025-04-20 | N/A |
The Linux Kernel 2.6.32 and later are affected by a denial of service, by flooding the diagnostic port 0x80 an exception can be triggered leading to a kernel panic. | ||||
CVE-2017-1000410 | 3 Debian, Linux, Redhat | 13 Debian Linux, Linux Kernel, Enterprise Linux and 10 more | 2025-04-20 | N/A |
The Linux kernel version 3.3-rc1 and later is affected by a vulnerability lies in the processing of incoming L2CAP commands - ConfigRequest, and ConfigResponse messages. This info leak is a result of uninitialized stack variables that may be returned to an attacker in their uninitialized state. By manipulating the code flows that precede the handling of these configuration messages, an attacker can also gain some control over which data will be held in the uninitialized stack variables. This can allow him to bypass KASLR, and stack canaries protection - as both pointers and stack canaries may be leaked in this manner. Combining this vulnerability (for example) with the previously disclosed RCE vulnerability in L2CAP configuration parsing (CVE-2017-1000251) may allow an attacker to exploit the RCE against kernels which were built with the above mitigations. These are the specifics of this vulnerability: In the function l2cap_parse_conf_rsp and in the function l2cap_parse_conf_req the following variable is declared without initialization: struct l2cap_conf_efs efs; In addition, when parsing input configuration parameters in both of these functions, the switch case for handling EFS elements may skip the memcpy call that will write to the efs variable: ... case L2CAP_CONF_EFS: if (olen == sizeof(efs)) memcpy(&efs, (void *)val, olen); ... The olen in the above if is attacker controlled, and regardless of that if, in both of these functions the efs variable would eventually be added to the outgoing configuration request that is being built: l2cap_add_conf_opt(&ptr, L2CAP_CONF_EFS, sizeof(efs), (unsigned long) &efs); So by sending a configuration request, or response, that contains an L2CAP_CONF_EFS element, but with an element length that is not sizeof(efs) - the memcpy to the uninitialized efs variable can be avoided, and the uninitialized variable would be returned to the attacker (16 bytes). | ||||
CVE-2017-11472 | 1 Linux | 1 Linux Kernel | 2025-04-20 | N/A |
The acpi_ns_terminate() function in drivers/acpi/acpica/nsutils.c in the Linux kernel before 4.12 does not flush the operand cache and causes a kernel stack dump, which allows local users to obtain sensitive information from kernel memory and bypass the KASLR protection mechanism (in the kernel through 4.9) via a crafted ACPI table. | ||||
CVE-2017-17558 | 3 Linux, Redhat, Suse | 6 Linux Kernel, Enterprise Linux, Enterprise Mrg and 3 more | 2025-04-20 | N/A |
The usb_destroy_configuration function in drivers/usb/core/config.c in the USB core subsystem in the Linux kernel through 4.14.5 does not consider the maximum number of configurations and interfaces before attempting to release resources, which allows local users to cause a denial of service (out-of-bounds write access) or possibly have unspecified other impact via a crafted USB device. |