CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
ems_usb_start_xmit in drivers/net/can/usb/ems_usb.c in the Linux kernel through 5.17.1 has a double free. |
A flaw was found in the Linux kernel’s networking code. A use-after-free was found in the way the sch_sfb enqueue function used the socket buffer (SKB) cb field after the same SKB had been enqueued (and freed) into a child qdisc. This flaw allows a local, unprivileged user to crash the system, causing a denial of service. |
In the Linux kernel before 6.1.13, there is a double free in net/mpls/af_mpls.c upon an allocation failure (for registering the sysctl table under a new location) during the renaming of a device. |
The fix for XSA-423 added logic to Linux'es netback driver to deal with
a frontend splitting a packet in a way such that not all of the headers
would come in one piece. Unfortunately the logic introduced there
didn't account for the extreme case of the entire packet being split
into as many pieces as permitted by the protocol, yet still being
smaller than the area that's specially dealt with to keep all (possible)
headers together. Such an unusual packet would therefore trigger a
buffer overrun in the driver. |
An out-of-bounds access vulnerability involving netfilter was reported and fixed as: f1082dd31fe4 (netfilter: nf_tables: Reject tables of unsupported family); While creating a new netfilter table, lack of a safeguard against invalid nf_tables family (pf) values within `nf_tables_newtable` function enables an attacker to achieve out-of-bounds access. |
Transmit requests in Xen's virtual network protocol can consist of
multiple parts. While not really useful, except for the initial part
any of them may be of zero length, i.e. carry no data at all. Besides a
certain initial portion of the to be transferred data, these parts are
directly translated into what Linux calls SKB fragments. Such converted
request parts can, when for a particular SKB they are all of length
zero, lead to a de-reference of NULL in core networking code. |
mm/mremap.c in the Linux kernel before 5.13.3 has a use-after-free via a stale TLB because an rmap lock is not held during a PUD move. |
In drivers/media/dvb-core/dmxdev.c in the Linux kernel through 5.19.10, there is a use-after-free caused by refcount races, affecting dvb_demux_open and dvb_dmxdev_release. |
Guest can force Linux netback driver to hog large amounts of kernel memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Incoming data packets for a guest in the Linux kernel's netback driver are buffered until the guest is ready to process them. There are some measures taken for avoiding to pile up too much data, but those can be bypassed by the guest: There is a timeout how long the client side of an interface can stop consuming new packets before it is assumed to have stalled, but this timeout is rather long (60 seconds by default). Using a UDP connection on a fast interface can easily accumulate gigabytes of data in that time. (CVE-2021-28715) The timeout could even never trigger if the guest manages to have only one free slot in its RX queue ring page and the next package would require more than one free slot, which may be the case when using GSO, XDP, or software hashing. (CVE-2021-28714) |
CGI::Cookie.parse in Ruby through 2.6.8 mishandles security prefixes in cookie names. This also affects the CGI gem through 0.3.0 for Ruby. |
A race condition flaw was found in the Linux kernel sound subsystem due to improper locking. It could lead to a NULL pointer dereference while handling the SNDCTL_DSP_SYNC ioctl. A privileged local user (root or member of the audio group) could use this flaw to crash the system, resulting in a denial of service condition |
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix possible memory leak in lpfc_rcv_padisc()
The call to lpfc_sli4_resume_rpi() in lpfc_rcv_padisc() may return an
unsuccessful status. In such cases, the elsiocb is not issued, the
completion is not called, and thus the elsiocb resource is leaked.
Check return value after calling lpfc_sli4_resume_rpi() and conditionally
release the elsiocb resource. |
In the Linux kernel, the following vulnerability has been resolved:
efi: runtime: Fix potential overflow of soft-reserved region size
md_size will have been narrowed if we have >= 4GB worth of pages in a
soft-reserved region. |
In the Linux kernel, the following vulnerability has been resolved:
spi: hisi-sfc-v3xx: Return IRQ_NONE if no interrupts were detected
Return IRQ_NONE from the interrupt handler when no interrupt was
detected. Because an empty interrupt will cause a null pointer error:
Unable to handle kernel NULL pointer dereference at virtual
address 0000000000000008
Call trace:
complete+0x54/0x100
hisi_sfc_v3xx_isr+0x2c/0x40 [spi_hisi_sfc_v3xx]
__handle_irq_event_percpu+0x64/0x1e0
handle_irq_event+0x7c/0x1cc |
In the Linux kernel, the following vulnerability has been resolved:
KVM: s390: fix setting of fpc register
kvm_arch_vcpu_ioctl_set_fpu() allows to set the floating point control
(fpc) register of a guest cpu. The new value is tested for validity by
temporarily loading it into the fpc register.
This may lead to corruption of the fpc register of the host process:
if an interrupt happens while the value is temporarily loaded into the fpc
register, and within interrupt context floating point or vector registers
are used, the current fp/vx registers are saved with save_fpu_regs()
assuming they belong to user space and will be loaded into fp/vx registers
when returning to user space.
test_fp_ctl() restores the original user space / host process fpc register
value, however it will be discarded, when returning to user space.
In result the host process will incorrectly continue to run with the value
that was supposed to be used for a guest cpu.
Fix this by simply removing the test. There is another test right before
the SIE context is entered which will handles invalid values.
This results in a change of behaviour: invalid values will now be accepted
instead of that the ioctl fails with -EINVAL. This seems to be acceptable,
given that this interface is most likely not used anymore, and this is in
addition the same behaviour implemented with the memory mapped interface
(replace invalid values with zero) - see sync_regs() in kvm-s390.c. |
In the Linux kernel, the following vulnerability has been resolved:
x86/srso: Add SRSO mitigation for Hygon processors
Add mitigation for the speculative return stack overflow vulnerability
which exists on Hygon processors too. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: nl80211: don't free NULL coalescing rule
If the parsing fails, we can dereference a NULL pointer here. |
In the Linux kernel, the following vulnerability has been resolved:
block/rnbd-srv: Check for unlikely string overflow
Since "dev_search_path" can technically be as large as PATH_MAX,
there was a risk of truncation when copying it and a second string
into "full_path" since it was also PATH_MAX sized. The W=1 builds were
reporting this warning:
drivers/block/rnbd/rnbd-srv.c: In function 'process_msg_open.isra':
drivers/block/rnbd/rnbd-srv.c:616:51: warning: '%s' directive output may be truncated writing up to 254 bytes into a region of size between 0 and 4095 [-Wformat-truncation=]
616 | snprintf(full_path, PATH_MAX, "%s/%s",
| ^~
In function 'rnbd_srv_get_full_path',
inlined from 'process_msg_open.isra' at drivers/block/rnbd/rnbd-srv.c:721:14: drivers/block/rnbd/rnbd-srv.c:616:17: note: 'snprintf' output between 2 and 4351 bytes into a destination of size 4096
616 | snprintf(full_path, PATH_MAX, "%s/%s",
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
617 | dev_search_path, dev_name);
| ~~~~~~~~~~~~~~~~~~~~~~~~~~
To fix this, unconditionally check for truncation (as was already done
for the case where "%SESSNAME%" was present). |
In the Linux kernel, the following vulnerability has been resolved:
s390/zcrypt: fix reference counting on zcrypt card objects
Tests with hot-plugging crytpo cards on KVM guests with debug
kernel build revealed an use after free for the load field of
the struct zcrypt_card. The reason was an incorrect reference
handling of the zcrypt card object which could lead to a free
of the zcrypt card object while it was still in use.
This is an example of the slab message:
kernel: 0x00000000885a7512-0x00000000885a7513 @offset=1298. First byte 0x68 instead of 0x6b
kernel: Allocated in zcrypt_card_alloc+0x36/0x70 [zcrypt] age=18046 cpu=3 pid=43
kernel: kmalloc_trace+0x3f2/0x470
kernel: zcrypt_card_alloc+0x36/0x70 [zcrypt]
kernel: zcrypt_cex4_card_probe+0x26/0x380 [zcrypt_cex4]
kernel: ap_device_probe+0x15c/0x290
kernel: really_probe+0xd2/0x468
kernel: driver_probe_device+0x40/0xf0
kernel: __device_attach_driver+0xc0/0x140
kernel: bus_for_each_drv+0x8c/0xd0
kernel: __device_attach+0x114/0x198
kernel: bus_probe_device+0xb4/0xc8
kernel: device_add+0x4d2/0x6e0
kernel: ap_scan_adapter+0x3d0/0x7c0
kernel: ap_scan_bus+0x5a/0x3b0
kernel: ap_scan_bus_wq_callback+0x40/0x60
kernel: process_one_work+0x26e/0x620
kernel: worker_thread+0x21c/0x440
kernel: Freed in zcrypt_card_put+0x54/0x80 [zcrypt] age=9024 cpu=3 pid=43
kernel: kfree+0x37e/0x418
kernel: zcrypt_card_put+0x54/0x80 [zcrypt]
kernel: ap_device_remove+0x4c/0xe0
kernel: device_release_driver_internal+0x1c4/0x270
kernel: bus_remove_device+0x100/0x188
kernel: device_del+0x164/0x3c0
kernel: device_unregister+0x30/0x90
kernel: ap_scan_adapter+0xc8/0x7c0
kernel: ap_scan_bus+0x5a/0x3b0
kernel: ap_scan_bus_wq_callback+0x40/0x60
kernel: process_one_work+0x26e/0x620
kernel: worker_thread+0x21c/0x440
kernel: kthread+0x150/0x168
kernel: __ret_from_fork+0x3c/0x58
kernel: ret_from_fork+0xa/0x30
kernel: Slab 0x00000372022169c0 objects=20 used=18 fp=0x00000000885a7c88 flags=0x3ffff00000000a00(workingset|slab|node=0|zone=1|lastcpupid=0x1ffff)
kernel: Object 0x00000000885a74b8 @offset=1208 fp=0x00000000885a7c88
kernel: Redzone 00000000885a74b0: bb bb bb bb bb bb bb bb ........
kernel: Object 00000000885a74b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
kernel: Object 00000000885a74c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
kernel: Object 00000000885a74d8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
kernel: Object 00000000885a74e8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
kernel: Object 00000000885a74f8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
kernel: Object 00000000885a7508: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 68 4b 6b 6b 6b a5 kkkkkkkkkkhKkkk.
kernel: Redzone 00000000885a7518: bb bb bb bb bb bb bb bb ........
kernel: Padding 00000000885a756c: 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZZZZZ
kernel: CPU: 0 PID: 387 Comm: systemd-udevd Not tainted 6.8.0-HF #2
kernel: Hardware name: IBM 3931 A01 704 (KVM/Linux)
kernel: Call Trace:
kernel: [<00000000ca5ab5b8>] dump_stack_lvl+0x90/0x120
kernel: [<00000000c99d78bc>] check_bytes_and_report+0x114/0x140
kernel: [<00000000c99d53cc>] check_object+0x334/0x3f8
kernel: [<00000000c99d820c>] alloc_debug_processing+0xc4/0x1f8
kernel: [<00000000c99d852e>] get_partial_node.part.0+0x1ee/0x3e0
kernel: [<00000000c99d94ec>] ___slab_alloc+0xaf4/0x13c8
kernel: [<00000000c99d9e38>] __slab_alloc.constprop.0+0x78/0xb8
kernel: [<00000000c99dc8dc>] __kmalloc+0x434/0x590
kernel: [<00000000c9b4c0ce>] ext4_htree_store_dirent+0x4e/0x1c0
kernel: [<00000000c9b908a2>] htree_dirblock_to_tree+0x17a/0x3f0
kernel:
---truncated--- |
A list management bug in BSS handling in the mac80211 stack in the Linux kernel 5.1 through 5.19.x before 5.19.16 could be used by local attackers (able to inject WLAN frames) to corrupt a linked list and, in turn, potentially execute code. |