| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A data corruption vulnerability has been identified in the luksmeta utility when used with the LUKS1 disk encryption format. An attacker with the necessary permissions can exploit this flaw by writing a large amount of metadata to an encrypted device. The utility fails to correctly validate the available space, causing the metadata to overwrite and corrupt the user's encrypted data. This action leads to a permanent loss of the stored information. Devices using the LUKS formats other than LUKS1 are not affected by this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix assertion failure when splitting ordered extent after transaction abort
If while we are doing a direct IO write a transaction abort happens, we
mark all existing ordered extents with the BTRFS_ORDERED_IOERR flag (done
at btrfs_destroy_ordered_extents()), and then after that if we enter
btrfs_split_ordered_extent() and the ordered extent has bytes left
(meaning we have a bio that doesn't cover the whole ordered extent, see
details at btrfs_extract_ordered_extent()), we will fail on the following
assertion at btrfs_split_ordered_extent():
ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
because the BTRFS_ORDERED_IOERR flag is set and the definition of
BTRFS_ORDERED_TYPE_FLAGS is just the union of all flags that identify the
type of write (regular, nocow, prealloc, compressed, direct IO, encoded).
Fix this by returning an error from btrfs_extract_ordered_extent() if we
find the BTRFS_ORDERED_IOERR flag in the ordered extent. The error will
be the error that resulted in the transaction abort or -EIO if no
transaction abort happened.
This was recently reported by syzbot with the following trace:
FAULT_INJECTION: forcing a failure.
name failslab, interval 1, probability 0, space 0, times 1
CPU: 0 UID: 0 PID: 5321 Comm: syz.0.0 Not tainted 6.13.0-rc5-syzkaller #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
fail_dump lib/fault-inject.c:53 [inline]
should_fail_ex+0x3b0/0x4e0 lib/fault-inject.c:154
should_failslab+0xac/0x100 mm/failslab.c:46
slab_pre_alloc_hook mm/slub.c:4072 [inline]
slab_alloc_node mm/slub.c:4148 [inline]
__do_kmalloc_node mm/slub.c:4297 [inline]
__kmalloc_noprof+0xdd/0x4c0 mm/slub.c:4310
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1037 [inline]
btrfs_chunk_alloc_add_chunk_item+0x244/0x1100 fs/btrfs/volumes.c:5742
reserve_chunk_space+0x1ca/0x2c0 fs/btrfs/block-group.c:4292
check_system_chunk fs/btrfs/block-group.c:4319 [inline]
do_chunk_alloc fs/btrfs/block-group.c:3891 [inline]
btrfs_chunk_alloc+0x77b/0xf80 fs/btrfs/block-group.c:4187
find_free_extent_update_loop fs/btrfs/extent-tree.c:4166 [inline]
find_free_extent+0x42d1/0x5810 fs/btrfs/extent-tree.c:4579
btrfs_reserve_extent+0x422/0x810 fs/btrfs/extent-tree.c:4672
btrfs_new_extent_direct fs/btrfs/direct-io.c:186 [inline]
btrfs_get_blocks_direct_write+0x706/0xfa0 fs/btrfs/direct-io.c:321
btrfs_dio_iomap_begin+0xbb7/0x1180 fs/btrfs/direct-io.c:525
iomap_iter+0x697/0xf60 fs/iomap/iter.c:90
__iomap_dio_rw+0xeb9/0x25b0 fs/iomap/direct-io.c:702
btrfs_dio_write fs/btrfs/direct-io.c:775 [inline]
btrfs_direct_write+0x610/0xa30 fs/btrfs/direct-io.c:880
btrfs_do_write_iter+0x2a0/0x760 fs/btrfs/file.c:1397
do_iter_readv_writev+0x600/0x880
vfs_writev+0x376/0xba0 fs/read_write.c:1050
do_pwritev fs/read_write.c:1146 [inline]
__do_sys_pwritev2 fs/read_write.c:1204 [inline]
__se_sys_pwritev2+0x196/0x2b0 fs/read_write.c:1195
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f1281f85d29
RSP: 002b:00007f12819fe038 EFLAGS: 00000246 ORIG_RAX: 0000000000000148
RAX: ffffffffffffffda RBX: 00007f1282176080 RCX: 00007f1281f85d29
RDX: 0000000000000001 RSI: 0000000020000240 RDI: 0000000000000005
RBP: 00007f12819fe090 R08: 0000000000000000 R09: 0000000000000003
R10: 0000000000007000 R11: 0000000000000246 R12: 0000000000000002
R13: 0000000000000000 R14: 00007f1282176080 R15: 00007ffcb9e23328
</TASK>
BTRFS error (device loop0 state A): Transaction aborted (error -12)
BTRFS: error (device loop0 state A
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: mcast: add RCU protection to mld_newpack()
mld_newpack() can be called without RTNL or RCU being held.
Note that we no longer can use sock_alloc_send_skb() because
ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep.
Instead use alloc_skb() and charge the net->ipv6.igmp_sk
socket under RCU protection. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: use RCU protection in ip6_default_advmss()
ip6_default_advmss() needs rcu protection to make
sure the net structure it reads does not disappear. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: synaptics - fix crash when enabling pass-through port
When enabling a pass-through port an interrupt might come before psmouse
driver binds to the pass-through port. However synaptics sub-driver
tries to access psmouse instance presumably associated with the
pass-through port to figure out if only 1 byte of response or entire
protocol packet needs to be forwarded to the pass-through port and may
crash if psmouse instance has not been attached to the port yet.
Fix the crash by introducing open() and close() methods for the port and
check if the port is open before trying to access psmouse instance.
Because psmouse calls serio_open() only after attaching psmouse instance
to serio port instance this prevents the potential crash. |
| In the Linux kernel, the following vulnerability has been resolved:
ata: libata-sff: Ensure that we cannot write outside the allocated buffer
reveliofuzzing reported that a SCSI_IOCTL_SEND_COMMAND ioctl with out_len
set to 0xd42, SCSI command set to ATA_16 PASS-THROUGH, ATA command set to
ATA_NOP, and protocol set to ATA_PROT_PIO, can cause ata_pio_sector() to
write outside the allocated buffer, overwriting random memory.
While a ATA device is supposed to abort a ATA_NOP command, there does seem
to be a bug either in libata-sff or QEMU, where either this status is not
set, or the status is cleared before read by ata_sff_hsm_move().
Anyway, that is most likely a separate bug.
Looking at __atapi_pio_bytes(), it already has a safety check to ensure
that __atapi_pio_bytes() cannot write outside the allocated buffer.
Add a similar check to ata_pio_sector(), such that also ata_pio_sector()
cannot write outside the allocated buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
misc: fastrpc: Fix copy buffer page size
For non-registered buffer, fastrpc driver copies the buffer and
pass it to the remote subsystem. There is a problem with current
implementation of page size calculation which is not considering
the offset in the calculation. This might lead to passing of
improper and out-of-bounds page size which could result in
memory issue. Calculate page start and page end using the offset
adjusted address instead of absolute address. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing/osnoise: Fix resetting of tracepoints
If a timerlat tracer is started with the osnoise option OSNOISE_WORKLOAD
disabled, but then that option is enabled and timerlat is removed, the
tracepoints that were enabled on timerlat registration do not get
disabled. If the option is disabled again and timelat is started, then it
triggers a warning in the tracepoint code due to registering the
tracepoint again without ever disabling it.
Do not use the same user space defined options to know to disable the
tracepoints when timerlat is removed. Instead, set a global flag when it
is enabled and use that flag to know to disable the events.
~# echo NO_OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo timerlat > /sys/kernel/tracing/current_tracer
~# echo OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo nop > /sys/kernel/tracing/current_tracer
~# echo NO_OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo timerlat > /sys/kernel/tracing/current_tracer
Triggers:
------------[ cut here ]------------
WARNING: CPU: 6 PID: 1337 at kernel/tracepoint.c:294 tracepoint_add_func+0x3b6/0x3f0
Modules linked in:
CPU: 6 UID: 0 PID: 1337 Comm: rtla Not tainted 6.13.0-rc4-test-00018-ga867c441128e-dirty #73
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:tracepoint_add_func+0x3b6/0x3f0
Code: 48 8b 53 28 48 8b 73 20 4c 89 04 24 e8 23 59 11 00 4c 8b 04 24 e9 36 fe ff ff 0f 0b b8 ea ff ff ff 45 84 e4 0f 84 68 fe ff ff <0f> 0b e9 61 fe ff ff 48 8b 7b 18 48 85 ff 0f 84 4f ff ff ff 49 8b
RSP: 0018:ffffb9b003a87ca0 EFLAGS: 00010202
RAX: 00000000ffffffef RBX: ffffffff92f30860 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff9bf59e91ccd0 RDI: ffffffff913b6410
RBP: 000000000000000a R08: 00000000000005c7 R09: 0000000000000002
R10: ffffb9b003a87ce0 R11: 0000000000000002 R12: 0000000000000001
R13: ffffb9b003a87ce0 R14: ffffffffffffffef R15: 0000000000000008
FS: 00007fce81209240(0000) GS:ffff9bf6fdd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055e99b728000 CR3: 00000001277c0002 CR4: 0000000000172ef0
Call Trace:
<TASK>
? __warn.cold+0xb7/0x14d
? tracepoint_add_func+0x3b6/0x3f0
? report_bug+0xea/0x170
? handle_bug+0x58/0x90
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? __pfx_trace_sched_migrate_callback+0x10/0x10
? tracepoint_add_func+0x3b6/0x3f0
? __pfx_trace_sched_migrate_callback+0x10/0x10
? __pfx_trace_sched_migrate_callback+0x10/0x10
tracepoint_probe_register+0x78/0xb0
? __pfx_trace_sched_migrate_callback+0x10/0x10
osnoise_workload_start+0x2b5/0x370
timerlat_tracer_init+0x76/0x1b0
tracing_set_tracer+0x244/0x400
tracing_set_trace_write+0xa0/0xe0
vfs_write+0xfc/0x570
? do_sys_openat2+0x9c/0xe0
ksys_write+0x72/0xf0
do_syscall_64+0x79/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix a race for an ODP MR which leads to CQE with error
This patch addresses a race condition for an ODP MR that can result in a
CQE with an error on the UMR QP.
During the __mlx5_ib_dereg_mr() flow, the following sequence of calls
occurs:
mlx5_revoke_mr()
mlx5r_umr_revoke_mr()
mlx5r_umr_post_send_wait()
At this point, the lkey is freed from the hardware's perspective.
However, concurrently, mlx5_ib_invalidate_range() might be triggered by
another task attempting to invalidate a range for the same freed lkey.
This task will:
- Acquire the umem_odp->umem_mutex lock.
- Call mlx5r_umr_update_xlt() on the UMR QP.
- Since the lkey has already been freed, this can lead to a CQE error,
causing the UMR QP to enter an error state [1].
To resolve this race condition, the umem_odp->umem_mutex lock is now also
acquired as part of the mlx5_revoke_mr() scope. Upon successful revoke,
we set umem_odp->private which points to that MR to NULL, preventing any
further invalidation attempts on its lkey.
[1] From dmesg:
infiniband rocep8s0f0: dump_cqe:277:(pid 0): WC error: 6, Message: memory bind operation error
cqe_dump: 00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000030: 00 00 00 00 08 00 78 06 25 00 11 b9 00 0e dd d2
WARNING: CPU: 15 PID: 1506 at drivers/infiniband/hw/mlx5/umr.c:394 mlx5r_umr_post_send_wait+0x15a/0x2b0 [mlx5_ib]
Modules linked in: ip6table_mangle ip6table_natip6table_filter ip6_tables iptable_mangle xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_umad ib_ipoib ib_cm mlx5_ib ib_uverbs ib_core fuse mlx5_core
CPU: 15 UID: 0 PID: 1506 Comm: ibv_rc_pingpong Not tainted 6.12.0-rc7+ #1626
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:mlx5r_umr_post_send_wait+0x15a/0x2b0 [mlx5_ib]
[..]
Call Trace:
<TASK>
mlx5r_umr_update_xlt+0x23c/0x3e0 [mlx5_ib]
mlx5_ib_invalidate_range+0x2e1/0x330 [mlx5_ib]
__mmu_notifier_invalidate_range_start+0x1e1/0x240
zap_page_range_single+0xf1/0x1a0
madvise_vma_behavior+0x677/0x6e0
do_madvise+0x1a2/0x4b0
__x64_sys_madvise+0x25/0x30
do_syscall_64+0x6b/0x140
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
nvkm/gsp: correctly advance the read pointer of GSP message queue
A GSP event message consists three parts: message header, RPC header,
message body. GSP calculates the number of pages to write from the
total size of a GSP message. This behavior can be observed from the
movement of the write pointer.
However, nvkm takes only the size of RPC header and message body as
the message size when advancing the read pointer. When handling a
two-page GSP message in the non rollback case, It wrongly takes the
message body of the previous message as the message header of the next
message. As the "message length" tends to be zero, in the calculation of
size needs to be copied (0 - size of (message header)), the size needs to
be copied will be "0xffffffxx". It also triggers a kernel panic due to a
NULL pointer error.
[ 547.614102] msg: 00000f90: ff ff ff ff ff ff ff ff 40 d7 18 fb 8b 00 00 00 ........@.......
[ 547.622533] msg: 00000fa0: 00 00 00 00 ff ff ff ff ff ff ff ff 00 00 00 00 ................
[ 547.630965] msg: 00000fb0: ff ff ff ff ff ff ff ff 00 00 00 00 ff ff ff ff ................
[ 547.639397] msg: 00000fc0: ff ff ff ff 00 00 00 00 ff ff ff ff ff ff ff ff ................
[ 547.647832] nvkm 0000:c1:00.0: gsp: peek msg rpc fn:0 len:0x0/0xffffffffffffffe0
[ 547.655225] nvkm 0000:c1:00.0: gsp: get msg rpc fn:0 len:0x0/0xffffffffffffffe0
[ 547.662532] BUG: kernel NULL pointer dereference, address: 0000000000000020
[ 547.669485] #PF: supervisor read access in kernel mode
[ 547.674624] #PF: error_code(0x0000) - not-present page
[ 547.679755] PGD 0 P4D 0
[ 547.682294] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ 547.686643] CPU: 22 PID: 322 Comm: kworker/22:1 Tainted: G E 6.9.0-rc6+ #1
[ 547.694893] Hardware name: ASRockRack 1U1G-MILAN/N/ROMED8-NL, BIOS L3.12E 09/06/2022
[ 547.702626] Workqueue: events r535_gsp_msgq_work [nvkm]
[ 547.707921] RIP: 0010:r535_gsp_msg_recv+0x87/0x230 [nvkm]
[ 547.713375] Code: 00 8b 70 08 48 89 e1 31 d2 4c 89 f7 e8 12 f5 ff ff 48 89 c5 48 85 c0 0f 84 cf 00 00 00 48 81 fd 00 f0 ff ff 0f 87 c4 00 00 00 <8b> 55 10 41 8b 46 30 85 d2 0f 85 f6 00 00 00 83 f8 04 76 10 ba 05
[ 547.732119] RSP: 0018:ffffabe440f87e10 EFLAGS: 00010203
[ 547.737335] RAX: 0000000000000010 RBX: 0000000000000008 RCX: 000000000000003f
[ 547.744461] RDX: 0000000000000000 RSI: ffffabe4480a8030 RDI: 0000000000000010
[ 547.751585] RBP: 0000000000000010 R08: 0000000000000000 R09: ffffabe440f87bb0
[ 547.758707] R10: ffffabe440f87dc8 R11: 0000000000000010 R12: 0000000000000000
[ 547.765834] R13: 0000000000000000 R14: ffff9351df1e5000 R15: 0000000000000000
[ 547.772958] FS: 0000000000000000(0000) GS:ffff93708eb00000(0000) knlGS:0000000000000000
[ 547.781035] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 547.786771] CR2: 0000000000000020 CR3: 00000003cc220002 CR4: 0000000000770ef0
[ 547.793896] PKRU: 55555554
[ 547.796600] Call Trace:
[ 547.799046] <TASK>
[ 547.801152] ? __die+0x20/0x70
[ 547.804211] ? page_fault_oops+0x75/0x170
[ 547.808221] ? print_hex_dump+0x100/0x160
[ 547.812226] ? exc_page_fault+0x64/0x150
[ 547.816152] ? asm_exc_page_fault+0x22/0x30
[ 547.820341] ? r535_gsp_msg_recv+0x87/0x230 [nvkm]
[ 547.825184] r535_gsp_msgq_work+0x42/0x50 [nvkm]
[ 547.829845] process_one_work+0x196/0x3d0
[ 547.833861] worker_thread+0x2fc/0x410
[ 547.837613] ? __pfx_worker_thread+0x10/0x10
[ 547.841885] kthread+0xdf/0x110
[ 547.845031] ? __pfx_kthread+0x10/0x10
[ 547.848775] ret_from_fork+0x30/0x50
[ 547.852354] ? __pfx_kthread+0x10/0x10
[ 547.856097] ret_from_fork_asm+0x1a/0x30
[ 547.860019] </TASK>
[ 547.862208] Modules linked in: nvkm(E) gsp_log(E) snd_seq_dummy(E) snd_hrtimer(E) snd_seq(E) snd_timer(E) snd_seq_device(E) snd(E) soundcore(E) rfkill(E) qrtr(E) vfat(E) fat(E) ipmi_ssif(E) amd_atl(E) intel_rapl_msr(E) intel_rapl_common(E) amd64_edac(E) mlx5_ib(E) edac_mce_amd(E) kvm_amd
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: fix hang in nfsd4_shutdown_callback
If nfs4_client is in courtesy state then there is no point to send
the callback. This causes nfsd4_shutdown_callback to hang since
cl_cb_inflight is not 0. This hang lasts about 15 minutes until TCP
notifies NFSD that the connection was dropped.
This patch modifies nfsd4_run_cb_work to skip the RPC call if
nfs4_client is in courtesy state. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: bail out when failed to load fw in psp_init_cap_microcode()
In function psp_init_cap_microcode(), it should bail out when failed to
load firmware, otherwise it may cause invalid memory access. |
| In the Linux kernel, the following vulnerability has been resolved:
batman-adv: fix panic during interface removal
Reference counting is used to ensure that
batadv_hardif_neigh_node and batadv_hard_iface
are not freed before/during
batadv_v_elp_throughput_metric_update work is
finished.
But there isn't a guarantee that the hard if will
remain associated with a soft interface up until
the work is finished.
This fixes a crash triggered by reboot that looks
like this:
Call trace:
batadv_v_mesh_free+0xd0/0x4dc [batman_adv]
batadv_v_elp_throughput_metric_update+0x1c/0xa4
process_one_work+0x178/0x398
worker_thread+0x2e8/0x4d0
kthread+0xd8/0xdc
ret_from_fork+0x10/0x20
(the batadv_v_mesh_free call is misleading,
and does not actually happen)
I was able to make the issue happen more reliably
by changing hardif_neigh->bat_v.metric_work work
to be delayed work. This allowed me to track down
and confirm the fix.
[sven@narfation.org: prevent entering batadv_v_elp_get_throughput without
soft_iface] |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Do not allow mmap() of persistent ring buffer
When trying to mmap a trace instance buffer that is attached to
reserve_mem, it would crash:
BUG: unable to handle page fault for address: ffffe97bd00025c8
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 2862f3067 P4D 2862f3067 PUD 0
Oops: Oops: 0000 [#1] PREEMPT_RT SMP PTI
CPU: 4 UID: 0 PID: 981 Comm: mmap-rb Not tainted 6.14.0-rc2-test-00003-g7f1a5e3fbf9e-dirty #233
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:validate_page_before_insert+0x5/0xb0
Code: e2 01 89 d0 c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 00 00 <48> 8b 46 08 a8 01 75 67 66 90 48 89 f0 8b 50 34 85 d2 74 76 48 89
RSP: 0018:ffffb148c2f3f968 EFLAGS: 00010246
RAX: ffff9fa5d3322000 RBX: ffff9fa5ccff9c08 RCX: 00000000b879ed29
RDX: ffffe97bd00025c0 RSI: ffffe97bd00025c0 RDI: ffff9fa5ccff9c08
RBP: ffffb148c2f3f9f0 R08: 0000000000000004 R09: 0000000000000004
R10: 0000000000000000 R11: 0000000000000200 R12: 0000000000000000
R13: 00007f16a18d5000 R14: ffff9fa5c48db6a8 R15: 0000000000000000
FS: 00007f16a1b54740(0000) GS:ffff9fa73df00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffe97bd00025c8 CR3: 00000001048c6006 CR4: 0000000000172ef0
Call Trace:
<TASK>
? __die_body.cold+0x19/0x1f
? __die+0x2e/0x40
? page_fault_oops+0x157/0x2b0
? search_module_extables+0x53/0x80
? validate_page_before_insert+0x5/0xb0
? kernelmode_fixup_or_oops.isra.0+0x5f/0x70
? __bad_area_nosemaphore+0x16e/0x1b0
? bad_area_nosemaphore+0x16/0x20
? do_kern_addr_fault+0x77/0x90
? exc_page_fault+0x22b/0x230
? asm_exc_page_fault+0x2b/0x30
? validate_page_before_insert+0x5/0xb0
? vm_insert_pages+0x151/0x400
__rb_map_vma+0x21f/0x3f0
ring_buffer_map+0x21b/0x2f0
tracing_buffers_mmap+0x70/0xd0
__mmap_region+0x6f0/0xbd0
mmap_region+0x7f/0x130
do_mmap+0x475/0x610
vm_mmap_pgoff+0xf2/0x1d0
ksys_mmap_pgoff+0x166/0x200
__x64_sys_mmap+0x37/0x50
x64_sys_call+0x1670/0x1d70
do_syscall_64+0xbb/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The reason was that the code that maps the ring buffer pages to user space
has:
page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
And uses that in:
vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
But virt_to_page() does not work with vmap()'d memory which is what the
persistent ring buffer has. It is rather trivial to allow this, but for
now just disable mmap() of instances that have their ring buffer from the
reserve_mem option.
If an mmap() is performed on a persistent buffer it will return -ENODEV
just like it would if the .mmap field wasn't defined in the
file_operations structure. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: am65-cpsw: fix freeing IRQ in am65_cpsw_nuss_remove_tx_chns()
When getting the IRQ we use k3_udma_glue_tx_get_irq() which returns
negative error value on error. So not NULL check is not sufficient
to deteremine if IRQ is valid. Check that IRQ is greater then zero
to ensure it is valid.
There is no issue at probe time but at runtime user can invoke
.set_channels which results in the following call chain.
am65_cpsw_set_channels()
am65_cpsw_nuss_update_tx_rx_chns()
am65_cpsw_nuss_remove_tx_chns()
am65_cpsw_nuss_init_tx_chns()
At this point if am65_cpsw_nuss_init_tx_chns() fails due to
k3_udma_glue_tx_get_irq() then tx_chn->irq will be set to a
negative value.
Then, at subsequent .set_channels with higher channel count we
will attempt to free an invalid IRQ in am65_cpsw_nuss_remove_tx_chns()
leading to a kernel warning.
The issue is present in the original commit that introduced this driver,
although there, am65_cpsw_nuss_update_tx_rx_chns() existed as
am65_cpsw_nuss_update_tx_chns(). |
| In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Validate the persistent meta data subbuf array
The meta data for a mapped ring buffer contains an array of indexes of all
the subbuffers. The first entry is the reader page, and the rest of the
entries lay out the order of the subbuffers in how the ring buffer link
list is to be created.
The validator currently makes sure that all the entries are within the
range of 0 and nr_subbufs. But it does not check if there are any
duplicates.
While working on the ring buffer, I corrupted this array, where I added
duplicates. The validator did not catch it and created the ring buffer
link list on top of it. Luckily, the corruption was only that the reader
page was also in the writer path and only presented corrupted data but did
not crash the kernel. But if there were duplicates in the writer side,
then it could corrupt the ring buffer link list and cause a crash.
Create a bitmask array with the size of the number of subbuffers. Then
clear it. When walking through the subbuf array checking to see if the
entries are within the range, test if its bit is already set in the
subbuf_mask. If it is, then there is duplicates and fail the validation.
If not, set the corresponding bit and continue. |
| Improper input validation in Microsoft Office SharePoint allows an authorized attacker to execute code over a network. |
| Uncaught exception in Microsoft Office allows an unauthorized attacker to deny service locally. |
| In the Linux kernel, the following vulnerability has been resolved:
partitions: mac: fix handling of bogus partition table
Fix several issues in partition probing:
- The bailout for a bad partoffset must use put_dev_sector(), since the
preceding read_part_sector() succeeded.
- If the partition table claims a silly sector size like 0xfff bytes
(which results in partition table entries straddling sector boundaries),
bail out instead of accessing out-of-bounds memory.
- We must not assume that the partition table contains proper NUL
termination - use strnlen() and strncmp() instead of strlen() and
strcmp(). |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Fix incorrect autogroup migration detection
scx_move_task() is called from sched_move_task() and tells the BPF scheduler
that cgroup migration is being committed. sched_move_task() is used by both
cgroup and autogroup migrations and scx_move_task() tried to filter out
autogroup migrations by testing the destination cgroup and PF_EXITING but
this is not enough. In fact, without explicitly tagging the thread which is
doing the cgroup migration, there is no good way to tell apart
scx_move_task() invocations for racing migration to the root cgroup and an
autogroup migration.
This led to scx_move_task() incorrectly ignoring a migration from non-root
cgroup to an autogroup of the root cgroup triggering the following warning:
WARNING: CPU: 7 PID: 1 at kernel/sched/ext.c:3725 scx_cgroup_can_attach+0x196/0x340
...
Call Trace:
<TASK>
cgroup_migrate_execute+0x5b1/0x700
cgroup_attach_task+0x296/0x400
__cgroup_procs_write+0x128/0x140
cgroup_procs_write+0x17/0x30
kernfs_fop_write_iter+0x141/0x1f0
vfs_write+0x31d/0x4a0
__x64_sys_write+0x72/0xf0
do_syscall_64+0x82/0x160
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Fix it by adding an argument to sched_move_task() that indicates whether the
moving is for a cgroup or autogroup migration. After the change,
scx_move_task() is called only for cgroup migrations and renamed to
scx_cgroup_move_task(). |