CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
NVIDIA nvJPEG library contains a vulnerability where an attacker can cause an out-of-bounds read by means of a specially crafted JPEG file. A successful exploit of this vulnerability might lead to information disclosure or denial of service. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the nvdisasm binary where a user may cause an out-of-bounds read by passing a malformed ELF file to nvdisasm. A successful exploit of this vulnerability may lead to a partial denial of service. |
Cross-Site Request Forgery (CSRF) vulnerability in Stephanie Leary Dashboard Notepad allows Cross Site Request Forgery. This issue affects Dashboard Notepad: from n/a through 1.42. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the cuobjdump binary where a user may cause an out-of-bounds read by passing a malformed ELF file to cuobjdump. A successful exploit of this vulnerability may lead to a partial denial of service. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the nvdisasm binary where a user may cause an out-of-bounds read by passing a malformed ELF file to nvdisasm. A successful exploit of this vulnerability may lead to a partial denial of service. |
Delta Electronics CNCSoft-G2 lacks proper validation of the user-supplied file. If a user opens a malicious file, an attacker can leverage this vulnerability to execute code in the context of the current process. |
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in WP Chill Passster allows Stored XSS. This issue affects Passster: from n/a through 4.2.18. |
Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in immonex immonex Kickstart Team allows PHP Local File Inclusion. This issue affects immonex Kickstart Team: from n/a through 1.6.9. |
Cross-Site Request Forgery (CSRF) vulnerability in Automattic Developer allows Cross Site Request Forgery. This issue affects Developer: from n/a through 1.2.6. |
The database for the web application is exposed without authentication, allowing an unauthenticated remote attacker to gain unauthorized access and potentially compromise it. |
The web application allows an unauthenticated remote attacker to learn information about existing user accounts with their corresponding role due to missing authentication for critical function. |
The MultiLoca - WooCommerce Multi Locations Inventory Management plugin for WordPress is vulnerable to unauthorized modification of data that can lead to privilege escalation due to a missing capability check on the 'wcmlim_settings_ajax_handler' function in all versions up to, and including, 4.2.8. This makes it possible for unauthenticated attackers to update arbitrary options on the WordPress site. This can be leveraged to update the default role for registration to administrator and enable user registration for attackers to gain administrative user access to a vulnerable site. |
ProjectSend versions prior to r1720 are affected by an improper authentication vulnerability. Remote, unauthenticated attackers can exploit this flaw by sending crafted HTTP requests to options.php, enabling unauthorized modification of the application's configuration. Successful exploitation allows attackers to create accounts, upload webshells, and embed malicious JavaScript. |
In the Linux kernel, the following vulnerability has been resolved:
userfaultfd: fix a race between writeprotect and exit_mmap()
A race is possible when a process exits, its VMAs are removed by
exit_mmap() and at the same time userfaultfd_writeprotect() is called.
The race was detected by KASAN on a development kernel, but it appears
to be possible on vanilla kernels as well.
Use mmget_not_zero() to prevent the race as done in other userfaultfd
operations. |
xml2js version 0.4.23 allows an external attacker to edit or add new properties to an object. This is possible because the application does not properly validate incoming JSON keys, thus allowing the __proto__ property to be edited. |
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix data corruption after conversion from inline format
Commit 6dbf7bb55598 ("fs: Don't invalidate page buffers in
block_write_full_page()") uncovered a latent bug in ocfs2 conversion
from inline inode format to a normal inode format.
The code in ocfs2_convert_inline_data_to_extents() attempts to zero out
the whole cluster allocated for file data by grabbing, zeroing, and
dirtying all pages covering this cluster. However these pages are
beyond i_size, thus writeback code generally ignores these dirty pages
and no blocks were ever actually zeroed on the disk.
This oversight was fixed by commit 693c241a5f6a ("ocfs2: No need to zero
pages past i_size.") for standard ocfs2 write path, inline conversion
path was apparently forgotten; the commit log also has a reasoning why
the zeroing actually is not needed.
After commit 6dbf7bb55598, things became worse as writeback code stopped
invalidating buffers on pages beyond i_size and thus these pages end up
with clean PageDirty bit but with buffers attached to these pages being
still dirty. So when a file is converted from inline format, then
writeback triggers, and then the file is grown so that these pages
become valid, the invalid dirtiness state is preserved,
mark_buffer_dirty() does nothing on these pages (buffers are already
dirty) but page is never written back because it is clean. So data
written to these pages is lost once pages are reclaimed.
Simple reproducer for the problem is:
xfs_io -f -c "pwrite 0 2000" -c "pwrite 2000 2000" -c "fsync" \
-c "pwrite 4000 2000" ocfs2_file
After unmounting and mounting the fs again, you can observe that end of
'ocfs2_file' has lost its contents.
Fix the problem by not doing the pointless zeroing during conversion
from inline format similarly as in the standard write path.
[akpm@linux-foundation.org: fix whitespace, per Joseph] |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix memory leak in ath12k_service_ready_ext_event
Currently, in ath12k_service_ready_ext_event(), svc_rdy_ext.mac_phy_caps
is not freed in the failure case, causing a memory leak. The following
trace is observed in kmemleak:
unreferenced object 0xffff8b3eb5789c00 (size 1024):
comm "softirq", pid 0, jiffies 4294942577
hex dump (first 32 bytes):
00 00 00 00 01 00 00 00 00 00 00 00 7b 00 00 10 ............{...
01 00 00 00 00 00 00 00 01 00 00 00 1f 38 00 00 .............8..
backtrace (crc 44e1c357):
__kmalloc_noprof+0x30b/0x410
ath12k_wmi_mac_phy_caps_parse+0x84/0x100 [ath12k]
ath12k_wmi_tlv_iter+0x5e/0x140 [ath12k]
ath12k_wmi_svc_rdy_ext_parse+0x308/0x4c0 [ath12k]
ath12k_wmi_tlv_iter+0x5e/0x140 [ath12k]
ath12k_service_ready_ext_event.isra.0+0x44/0xd0 [ath12k]
ath12k_wmi_op_rx+0x2eb/0xd70 [ath12k]
ath12k_htc_rx_completion_handler+0x1f4/0x330 [ath12k]
ath12k_ce_recv_process_cb+0x218/0x300 [ath12k]
ath12k_pci_ce_workqueue+0x1b/0x30 [ath12k]
process_one_work+0x219/0x680
bh_worker+0x198/0x1f0
tasklet_action+0x13/0x30
handle_softirqs+0xca/0x460
__irq_exit_rcu+0xbe/0x110
irq_exit_rcu+0x9/0x30
Free svc_rdy_ext.mac_phy_caps in the error case to fix this memory leak.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: l2cap: Check encryption key size on incoming connection
This is required for passing GAP/SEC/SEM/BI-04-C PTS test case:
Security Mode 4 Level 4, Responder - Invalid Encryption Key Size
- 128 bit
This tests the security key with size from 1 to 15 bytes while the
Security Mode 4 Level 4 requests 16 bytes key size.
Currently PTS fails with the following logs:
- expected:Connection Response:
Code: [3 (0x03)] Code
Identifier: (lt)WildCard: Exists(gt)
Length: [8 (0x0008)]
Destination CID: (lt)WildCard: Exists(gt)
Source CID: [64 (0x0040)]
Result: [3 (0x0003)] Connection refused - Security block
Status: (lt)WildCard: Exists(gt),
but received:Connection Response:
Code: [3 (0x03)] Code
Identifier: [1 (0x01)]
Length: [8 (0x0008)]
Destination CID: [64 (0x0040)]
Source CID: [64 (0x0040)]
Result: [0 (0x0000)] Connection Successful
Status: [0 (0x0000)] No further information available
And HCI logs:
< HCI Command: Read Encrypti.. (0x05|0x0008) plen 2
Handle: 14 Address: 00:1B:DC:F2:24:10 (Vencer Co., Ltd.)
> HCI Event: Command Complete (0x0e) plen 7
Read Encryption Key Size (0x05|0x0008) ncmd 1
Status: Success (0x00)
Handle: 14 Address: 00:1B:DC:F2:24:10 (Vencer Co., Ltd.)
Key size: 7
> ACL Data RX: Handle 14 flags 0x02 dlen 12
L2CAP: Connection Request (0x02) ident 1 len 4
PSM: 4097 (0x1001)
Source CID: 64
< ACL Data TX: Handle 14 flags 0x00 dlen 16
L2CAP: Connection Response (0x03) ident 1 len 8
Destination CID: 64
Source CID: 64
Result: Connection successful (0x0000)
Status: No further information available (0x0000) |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Disable works on hci_unregister_dev
This make use of disable_work_* on hci_unregister_dev since the hci_dev is
about to be freed new submissions are not disarable. |
Improper permission check in ZooKeeper AdminServer lets authorized clients to run snapshot and restore command with insufficient permissions.
This issue affects Apache ZooKeeper: from 3.9.0 before 3.9.4.
Users are recommended to upgrade to version 3.9.4, which fixes the issue.
The issue can be mitigated by disabling both commands (via admin.snapshot.enabled and admin.restore.enabled), disabling the whole AdminServer interface (via admin.enableServer), or ensuring that the root ACL does not provide open permissions. (Note that ZooKeeper ACLs are not recursive, so this does not impact operations on child nodes besides notifications from recursive watches.) |