Search Results (9682 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-0881 1 Mozilla 1 Firefox 2026-01-15 10 Critical
Sandbox escape in the Messaging System component. This vulnerability affects Firefox < 147 and Thunderbird < 147.
CVE-2026-0877 1 Mozilla 2 Firefox, Firefox Esr 2026-01-15 8.1 High
Mitigation bypass in the DOM: Security component. This vulnerability affects Firefox < 147, Firefox ESR < 115.32, Firefox ESR < 140.7, Thunderbird < 147, and Thunderbird < 140.7.
CVE-2025-66371 1 Iteras 1 Peppol-py 2026-01-15 5 Medium
Peppol-py before 1.1.1 allows XXE attacks because of the Saxon configuration. When validating XML-based invoices, the XML parser could read files from the filesystem and expose their content to a remote host.
CVE-2025-66370 1 Kivitendo 1 Kivitendo 2026-01-15 5 Medium
Kivitendo before 3.9.2 allows XXE injection. By uploading an electronic invoice in the ZUGFeRD format, it is possible to read and exfiltrate files from the server's filesystem.
CVE-2025-66516 1 Apache 1 Tika 2026-01-15 8.4 High
Critical XXE in Apache Tika tika-core (1.13-3.2.1), tika-pdf-module (2.0.0-3.2.1) and tika-parsers (1.13-1.28.5) modules on all platforms allows an attacker to carry out XML External Entity injection via a crafted XFA file inside of a PDF. This CVE covers the same vulnerability as in CVE-2025-54988. However, this CVE expands the scope of affected packages in two ways. First, while the entrypoint for the vulnerability was the tika-parser-pdf-module as reported in CVE-2025-54988, the vulnerability and its fix were in tika-core. Users who upgraded the tika-parser-pdf-module but did not upgrade tika-core to >= 3.2.2 would still be vulnerable. Second, the original report failed to mention that in the 1.x Tika releases, the PDFParser was in the "org.apache.tika:tika-parsers" module.
CVE-2025-60935 1 Returnfi 1 Blitz 2026-01-15 6.5 Medium
An open redirect vulnerability in the login endpoint of Blitz Panel v1.17.0 allows attackers to redirect users to malicious domains via a crafted URL. This issue affects the next_url parameter in the login endpoint and could lead to phishing or token theft after successful authentication.
CVE-2025-58149 1 Xen 1 Xen 2026-01-14 7.5 High
When passing through PCI devices, the detach logic in libxl won't remove access permissions to any 64bit memory BARs the device might have. As a result a domain can still have access any 64bit memory BAR when such device is no longer assigned to the domain. For PV domains the permission leak allows the domain itself to map the memory in the page-tables. For HVM it would require a compromised device model or stubdomain to map the leaked memory into the HVM domain p2m.
CVE-2025-14687 1 Ibm 2 Db2, Db2 Intelligence Center 2026-01-14 4.3 Medium
IBM Db2 Intelligence Center 1.1.0, 1.1.1, 1.1.2 could allow an authenticated user to perform unauthorized actions due to client-side enforcement of sever side security mechanisms.
CVE-2025-15398 1 Uatech 1 Badaso 2026-01-14 3.7 Low
A security vulnerability has been detected in Uasoft badaso up to 2.9.7. Affected is the function forgetPassword of the file src/Controllers/BadasoAuthController.php of the component Token Handler. Such manipulation leads to weak password recovery. The attack can be executed remotely. This attack is characterized by high complexity. The exploitability is told to be difficult. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2025-39884 1 Linux 1 Linux Kernel 2026-01-14 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix subvolume deletion lockup caused by inodes xarray race There is a race condition between inode eviction and inode caching that can cause a live struct btrfs_inode to be missing from the root->inodes xarray. Specifically, there is a window during evict() between the inode being unhashed and deleted from the xarray. If btrfs_iget() is called for the same inode in that window, it will be recreated and inserted into the xarray, but then eviction will delete the new entry, leaving nothing in the xarray: Thread 1 Thread 2 --------------------------------------------------------------- evict() remove_inode_hash() btrfs_iget_path() btrfs_iget_locked() btrfs_read_locked_inode() btrfs_add_inode_to_root() destroy_inode() btrfs_destroy_inode() btrfs_del_inode_from_root() __xa_erase In turn, this can cause issues for subvolume deletion. Specifically, if an inode is in this lost state, and all other inodes are evicted, then btrfs_del_inode_from_root() will call btrfs_add_dead_root() prematurely. If the lost inode has a delayed_node attached to it, then when btrfs_clean_one_deleted_snapshot() calls btrfs_kill_all_delayed_nodes(), it will loop forever because the delayed_nodes xarray will never become empty (unless memory pressure forces the inode out). We saw this manifest as soft lockups in production. Fix it by only deleting the xarray entry if it matches the given inode (using __xa_cmpxchg()).
CVE-2023-53428 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powercap: arm_scmi: Remove recursion while parsing zones Powercap zones can be defined as arranged in a hierarchy of trees and when registering a zone with powercap_register_zone(), the kernel powercap subsystem expects this to happen starting from the root zones down to the leaves; on the other side, de-registration by powercap_deregister_zone() must begin from the leaf zones. Available SCMI powercap zones are retrieved dynamically from the platform at probe time and, while any defined hierarchy between the zones is described properly in the zones descriptor, the platform returns the availables zones with no particular well-defined order: as a consequence, the trees possibly composing the hierarchy of zones have to be somehow walked properly to register the retrieved zones from the root. Currently the ARM SCMI Powercap driver walks the zones using a recursive algorithm; this approach, even though correct and tested can lead to kernel stack overflow when processing a returned hierarchy of zones composed by particularly high trees. Avoid possible kernel stack overflow by substituting the recursive approach with an iterative one supported by a dynamically allocated stack-like data structure.
CVE-2022-50910 1 Beehive Forum 1 Beehive Forum 2026-01-14 7.5 High
Beehive Forum 1.5.2 contains a host header injection vulnerability in the forgot password functionality that allows attackers to manipulate password reset requests. Attackers can inject a malicious host header to intercept password reset tokens and change victim account passwords without direct authentication.
CVE-2022-50407 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: hisilicon/qm - increase the memory of local variables Increase the buffer to prevent stack overflow by fuzz test. The maximum length of the qos configuration buffer is 256 bytes. Currently, the value of the 'val buffer' is only 32 bytes. The sscanf does not check the dest memory length. So the 'val buffer' may stack overflow.
CVE-2019-25253 1 Kyocera 1 Net Admin 2026-01-14 7.5 High
KYOCERA Net Admin 3.4.0906 contains an XML External Entity (XXE) injection vulnerability in the Multi-Set Template Editor that allows unauthenticated attackers to read arbitrary system files. Attackers can craft a malicious XML file with external entity references to retrieve sensitive configuration data like database credentials through an out-of-band channel attack.
CVE-2022-50899 2 Geonetwork, Geonetwork-opensource 2 Opensource, Geonetwork 2026-01-14 6.5 Medium
Geonetwork 3.10 through 4.2.0 contains an XML external entity vulnerability in PDF rendering that allows attackers to retrieve arbitrary files from the server. Attackers can exploit the insecure XML parser by crafting a malicious XML document with external entity references to read system files through the baseURL parameter in PDF creation requests.
CVE-2025-68973 1 Gnupg 1 Gnupg 2026-01-14 7.8 High
In GnuPG before 2.4.9, armor_filter in g10/armor.c has two increments of an index variable where one is intended, leading to an out-of-bounds write for crafted input. (For ExtendedLTS, 2.2.51 and later are fixed versions.)
CVE-2025-39832 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix lockdep assertion on sync reset unload event Fix lockdep assertion triggered during sync reset unload event. When the sync reset flow is initiated using the devlink reload fw_activate option, the PF already holds the devlink lock while handling unload event. In this case, delegate sync reset unload event handling back to the devlink callback process to avoid double-locking and resolve the lockdep warning. Kernel log: WARNING: CPU: 9 PID: 1578 at devl_assert_locked+0x31/0x40 [...] Call Trace: <TASK> mlx5_unload_one_devl_locked+0x2c/0xc0 [mlx5_core] mlx5_sync_reset_unload_event+0xaf/0x2f0 [mlx5_core] process_one_work+0x222/0x640 worker_thread+0x199/0x350 kthread+0x10b/0x230 ? __pfx_worker_thread+0x10/0x10 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x8e/0x100 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK>
CVE-2023-53348 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix deadlock when aborting transaction during relocation with scrub Before relocating a block group we pause scrub, then do the relocation and then unpause scrub. The relocation process requires starting and committing a transaction, and if we have a failure in the critical section of the transaction commit path (transaction state >= TRANS_STATE_COMMIT_START), we will deadlock if there is a paused scrub. That results in stack traces like the following: [42.479] BTRFS info (device sdc): relocating block group 53876686848 flags metadata|raid6 [42.936] BTRFS warning (device sdc): Skipping commit of aborted transaction. [42.936] ------------[ cut here ]------------ [42.936] BTRFS: Transaction aborted (error -28) [42.936] WARNING: CPU: 11 PID: 346822 at fs/btrfs/transaction.c:1977 btrfs_commit_transaction+0xcc8/0xeb0 [btrfs] [42.936] Modules linked in: dm_flakey dm_mod loop btrfs (...) [42.936] CPU: 11 PID: 346822 Comm: btrfs Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [42.936] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [42.936] RIP: 0010:btrfs_commit_transaction+0xcc8/0xeb0 [btrfs] [42.936] Code: ff ff 45 8b (...) [42.936] RSP: 0018:ffffb58649633b48 EFLAGS: 00010282 [42.936] RAX: 0000000000000000 RBX: ffff8be6ef4d5bd8 RCX: 0000000000000000 [42.936] RDX: 0000000000000002 RSI: ffffffffb35e7782 RDI: 00000000ffffffff [42.936] RBP: ffff8be6ef4d5c98 R08: 0000000000000000 R09: ffffb586496339e8 [42.936] R10: 0000000000000001 R11: 0000000000000001 R12: ffff8be6d38c7c00 [42.936] R13: 00000000ffffffe4 R14: ffff8be6c268c000 R15: ffff8be6ef4d5cf0 [42.936] FS: 00007f381a82b340(0000) GS:ffff8beddfcc0000(0000) knlGS:0000000000000000 [42.936] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [42.936] CR2: 00007f1e35fb7638 CR3: 0000000117680006 CR4: 0000000000370ee0 [42.936] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [42.936] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [42.936] Call Trace: [42.936] <TASK> [42.936] ? start_transaction+0xcb/0x610 [btrfs] [42.936] prepare_to_relocate+0x111/0x1a0 [btrfs] [42.936] relocate_block_group+0x57/0x5d0 [btrfs] [42.936] ? btrfs_wait_nocow_writers+0x25/0xb0 [btrfs] [42.936] btrfs_relocate_block_group+0x248/0x3c0 [btrfs] [42.936] ? __pfx_autoremove_wake_function+0x10/0x10 [42.936] btrfs_relocate_chunk+0x3b/0x150 [btrfs] [42.936] btrfs_balance+0x8ff/0x11d0 [btrfs] [42.936] ? __kmem_cache_alloc_node+0x14a/0x410 [42.936] btrfs_ioctl+0x2334/0x32c0 [btrfs] [42.937] ? mod_objcg_state+0xd2/0x360 [42.937] ? refill_obj_stock+0xb0/0x160 [42.937] ? seq_release+0x25/0x30 [42.937] ? __rseq_handle_notify_resume+0x3b5/0x4b0 [42.937] ? percpu_counter_add_batch+0x2e/0xa0 [42.937] ? __x64_sys_ioctl+0x88/0xc0 [42.937] __x64_sys_ioctl+0x88/0xc0 [42.937] do_syscall_64+0x38/0x90 [42.937] entry_SYSCALL_64_after_hwframe+0x72/0xdc [42.937] RIP: 0033:0x7f381a6ffe9b [42.937] Code: 00 48 89 44 24 (...) [42.937] RSP: 002b:00007ffd45ecf060 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [42.937] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f381a6ffe9b [42.937] RDX: 00007ffd45ecf150 RSI: 00000000c4009420 RDI: 0000000000000003 [42.937] RBP: 0000000000000003 R08: 0000000000000013 R09: 0000000000000000 [42.937] R10: 00007f381a60c878 R11: 0000000000000246 R12: 00007ffd45ed0423 [42.937] R13: 00007ffd45ecf150 R14: 0000000000000000 R15: 00007ffd45ecf148 [42.937] </TASK> [42.937] ---[ end trace 0000000000000000 ]--- [42.937] BTRFS: error (device sdc: state A) in cleanup_transaction:1977: errno=-28 No space left [59.196] INFO: task btrfs:346772 blocked for more than 120 seconds. [59.196] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [59.196] "echo 0 > /proc/sys/kernel/hung_ ---truncated---
CVE-2023-53323 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext2/dax: Fix ext2_setsize when len is page aligned PAGE_ALIGN(x) macro gives the next highest value which is multiple of pagesize. But if x is already page aligned then it simply returns x. So, if x passed is 0 in dax_zero_range() function, that means the length gets passed as 0 to ->iomap_begin(). In ext2 it then calls ext2_get_blocks -> max_blocks as 0 and hits bug_on here in ext2_get_blocks(). BUG_ON(maxblocks == 0); Instead we should be calling dax_truncate_page() here which takes care of it. i.e. it only calls dax_zero_range if the offset is not page/block aligned. This can be easily triggered with following on fsdax mounted pmem device. dd if=/dev/zero of=file count=1 bs=512 truncate -s 0 file [79.525838] EXT2-fs (pmem0): DAX enabled. Warning: EXPERIMENTAL, use at your own risk [79.529376] ext2 filesystem being mounted at /mnt1/test supports timestamps until 2038 (0x7fffffff) [93.793207] ------------[ cut here ]------------ [93.795102] kernel BUG at fs/ext2/inode.c:637! [93.796904] invalid opcode: 0000 [#1] PREEMPT SMP PTI [93.798659] CPU: 0 PID: 1192 Comm: truncate Not tainted 6.3.0-rc2-xfstests-00056-g131086faa369 #139 [93.806459] RIP: 0010:ext2_get_blocks.constprop.0+0x524/0x610 <...> [93.835298] Call Trace: [93.836253] <TASK> [93.837103] ? lock_acquire+0xf8/0x110 [93.838479] ? d_lookup+0x69/0xd0 [93.839779] ext2_iomap_begin+0xa7/0x1c0 [93.841154] iomap_iter+0xc7/0x150 [93.842425] dax_zero_range+0x6e/0xa0 [93.843813] ext2_setsize+0x176/0x1b0 [93.845164] ext2_setattr+0x151/0x200 [93.846467] notify_change+0x341/0x4e0 [93.847805] ? lock_acquire+0xf8/0x110 [93.849143] ? do_truncate+0x74/0xe0 [93.850452] ? do_truncate+0x84/0xe0 [93.851739] do_truncate+0x84/0xe0 [93.852974] do_sys_ftruncate+0x2b4/0x2f0 [93.854404] do_syscall_64+0x3f/0x90 [93.855789] entry_SYSCALL_64_after_hwframe+0x72/0xdc
CVE-2023-53281 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drivers: staging: rtl8723bs: Fix locking in _rtw_join_timeout_handler() Commit 041879b12ddb ("drivers: staging: rtl8192bs: Fix deadlock in rtw_joinbss_event_prehandle()") besides fixing the deadlock also modified _rtw_join_timeout_handler() to use spin_[un]lock_irq() instead of spin_[un]lock_bh(). _rtw_join_timeout_handler() calls rtw_do_join() which takes pmlmepriv->scanned_queue.lock using spin_[un]lock_bh(). This spin_unlock_bh() call re-enables softirqs which triggers an oops in kernel/softirq.c: __local_bh_enable_ip() when it calls lockdep_assert_irqs_enabled(): [ 244.506087] WARNING: CPU: 2 PID: 0 at kernel/softirq.c:376 __local_bh_enable_ip+0xa6/0x100 ... [ 244.509022] Call Trace: [ 244.509048] <IRQ> [ 244.509100] _rtw_join_timeout_handler+0x134/0x170 [r8723bs] [ 244.509468] ? __pfx__rtw_join_timeout_handler+0x10/0x10 [r8723bs] [ 244.509772] ? __pfx__rtw_join_timeout_handler+0x10/0x10 [r8723bs] [ 244.510076] call_timer_fn+0x95/0x2a0 [ 244.510200] __run_timers.part.0+0x1da/0x2d0 This oops is causd by the switch to spin_[un]lock_irq() which disables the IRQs for the entire duration of _rtw_join_timeout_handler(). Disabling the IRQs is not necessary since all code taking this lock runs from either user contexts or from softirqs, switch back to spin_[un]lock_bh() to fix this.