| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix i_data_sem unlock order in ext4_ind_migrate()
Fuzzing reports a possible deadlock in jbd2_log_wait_commit.
This issue is triggered when an EXT4_IOC_MIGRATE ioctl is set to require
synchronous updates because the file descriptor is opened with O_SYNC.
This can lead to the jbd2_journal_stop() function calling
jbd2_might_wait_for_commit(), potentially causing a deadlock if the
EXT4_IOC_MIGRATE call races with a write(2) system call.
This problem only arises when CONFIG_PROVE_LOCKING is enabled. In this
case, the jbd2_might_wait_for_commit macro locks jbd2_handle in the
jbd2_journal_stop function while i_data_sem is locked. This triggers
lockdep because the jbd2_journal_start function might also lock the same
jbd2_handle simultaneously.
Found by Linux Verification Center (linuxtesting.org) with syzkaller.
Rule: add |
| In the Linux kernel, the following vulnerability has been resolved:
dma-debug: fix a possible deadlock on radix_lock
radix_lock() shouldn't be held while holding dma_hash_entry[idx].lock
otherwise, there's a possible deadlock scenario when
dma debug API is called holding rq_lock():
CPU0 CPU1 CPU2
dma_free_attrs()
check_unmap() add_dma_entry() __schedule() //out
(A) rq_lock()
get_hash_bucket()
(A) dma_entry_hash
check_sync()
(A) radix_lock() (W) dma_entry_hash
dma_entry_free()
(W) radix_lock()
// CPU2's one
(W) rq_lock()
CPU1 situation can happen when it extending radix tree and
it tries to wake up kswapd via wake_all_kswapd().
CPU2 situation can happen while perf_event_task_sched_out()
(i.e. dma sync operation is called while deleting perf_event using
etm and etr tmc which are Arm Coresight hwtracing driver backends).
To remove this possible situation, call dma_entry_free() after
put_hash_bucket() in check_unmap(). |
| In the Linux kernel, the following vulnerability has been resolved:
pinmux: Use sequential access to access desc->pinmux data
When two client of the same gpio call pinctrl_select_state() for the
same functionality, we are seeing NULL pointer issue while accessing
desc->mux_owner.
Let's say two processes A, B executing in pin_request() for the same pin
and process A updates the desc->mux_usecount but not yet updated the
desc->mux_owner while process B see the desc->mux_usecount which got
updated by A path and further executes strcmp and while accessing
desc->mux_owner it crashes with NULL pointer.
Serialize the access to mux related setting with a mutex lock.
cpu0 (process A) cpu1(process B)
pinctrl_select_state() { pinctrl_select_state() {
pin_request() { pin_request() {
...
....
} else {
desc->mux_usecount++;
desc->mux_usecount && strcmp(desc->mux_owner, owner)) {
if (desc->mux_usecount > 1)
return 0;
desc->mux_owner = owner;
} } |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Add missing bridge lock to pci_bus_lock()
One of the true positives that the cfg_access_lock lockdep effort
identified is this sequence:
WARNING: CPU: 14 PID: 1 at drivers/pci/pci.c:4886 pci_bridge_secondary_bus_reset+0x5d/0x70
RIP: 0010:pci_bridge_secondary_bus_reset+0x5d/0x70
Call Trace:
<TASK>
? __warn+0x8c/0x190
? pci_bridge_secondary_bus_reset+0x5d/0x70
? report_bug+0x1f8/0x200
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? pci_bridge_secondary_bus_reset+0x5d/0x70
pci_reset_bus+0x1d8/0x270
vmd_probe+0x778/0xa10
pci_device_probe+0x95/0x120
Where pci_reset_bus() users are triggering unlocked secondary bus resets.
Ironically pci_bus_reset(), several calls down from pci_reset_bus(), uses
pci_bus_lock() before issuing the reset which locks everything *but* the
bridge itself.
For the same motivation as adding:
bridge = pci_upstream_bridge(dev);
if (bridge)
pci_dev_lock(bridge);
to pci_reset_function() for the "bus" and "cxl_bus" reset cases, add
pci_dev_lock() for @bus->self to pci_bus_lock().
[bhelgaas: squash in recursive locking deadlock fix from Keith Busch:
https://lore.kernel.org/r/20240711193650.701834-1-kbusch@meta.com] |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix qgroup reserve leaks in cow_file_range
In the buffered write path, the dirty page owns the qgroup reserve until
it creates an ordered_extent.
Therefore, any errors that occur before the ordered_extent is created
must free that reservation, or else the space is leaked. The fstest
generic/475 exercises various IO error paths, and is able to trigger
errors in cow_file_range where we fail to get to allocating the ordered
extent. Note that because we *do* clear delalloc, we are likely to
remove the inode from the delalloc list, so the inodes/pages to not have
invalidate/launder called on them in the commit abort path.
This results in failures at the unmount stage of the test that look like:
BTRFS: error (device dm-8 state EA) in cleanup_transaction:2018: errno=-5 IO failure
BTRFS: error (device dm-8 state EA) in btrfs_replace_file_extents:2416: errno=-5 IO failure
BTRFS warning (device dm-8 state EA): qgroup 0/5 has unreleased space, type 0 rsv 28672
------------[ cut here ]------------
WARNING: CPU: 3 PID: 22588 at fs/btrfs/disk-io.c:4333 close_ctree+0x222/0x4d0 [btrfs]
Modules linked in: btrfs blake2b_generic libcrc32c xor zstd_compress raid6_pq
CPU: 3 PID: 22588 Comm: umount Kdump: loaded Tainted: G W 6.10.0-rc7-gab56fde445b8 #21
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
RIP: 0010:close_ctree+0x222/0x4d0 [btrfs]
RSP: 0018:ffffb4465283be00 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffffa1a1818e1000 RCX: 0000000000000001
RDX: 0000000000000000 RSI: ffffb4465283bbe0 RDI: ffffa1a19374fcb8
RBP: ffffa1a1818e13c0 R08: 0000000100028b16 R09: 0000000000000000
R10: 0000000000000003 R11: 0000000000000003 R12: ffffa1a18ad7972c
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f9168312b80(0000) GS:ffffa1a4afcc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f91683c9140 CR3: 000000010acaa000 CR4: 00000000000006f0
Call Trace:
<TASK>
? close_ctree+0x222/0x4d0 [btrfs]
? __warn.cold+0x8e/0xea
? close_ctree+0x222/0x4d0 [btrfs]
? report_bug+0xff/0x140
? handle_bug+0x3b/0x70
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? close_ctree+0x222/0x4d0 [btrfs]
generic_shutdown_super+0x70/0x160
kill_anon_super+0x11/0x40
btrfs_kill_super+0x11/0x20 [btrfs]
deactivate_locked_super+0x2e/0xa0
cleanup_mnt+0xb5/0x150
task_work_run+0x57/0x80
syscall_exit_to_user_mode+0x121/0x130
do_syscall_64+0xab/0x1a0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f916847a887
---[ end trace 0000000000000000 ]---
BTRFS error (device dm-8 state EA): qgroup reserved space leaked
Cases 2 and 3 in the out_reserve path both pertain to this type of leak
and must free the reserved qgroup data. Because it is already an error
path, I opted not to handle the possible errors in
btrfs_free_qgroup_data. |
| In the Linux kernel, the following vulnerability has been resolved:
xen: privcmd: Switch from mutex to spinlock for irqfds
irqfd_wakeup() gets EPOLLHUP, when it is called by
eventfd_release() by way of wake_up_poll(&ctx->wqh, EPOLLHUP), which
gets called under spin_lock_irqsave(). We can't use a mutex here as it
will lead to a deadlock.
Fix it by switching over to a spin lock. |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: fix a possible DMA corruption
ARCH_DMA_MINALIGN was defined as 16 - this is too small - it may be
possible that two unrelated 16-byte allocations share a cache line. If
one of these allocations is written using DMA and the other is written
using cached write, the value that was written with DMA may be
corrupted.
This commit changes ARCH_DMA_MINALIGN to be 128 on PA20 and 32 on PA1.1 -
that's the largest possible cache line size.
As different parisc microarchitectures have different cache line size, we
define arch_slab_minalign(), cache_line_size() and
dma_get_cache_alignment() so that the kernel may tune slab cache
parameters dynamically, based on the detected cache line size. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: pca953x: fix pca953x_irq_bus_sync_unlock race
Ensure that `i2c_lock' is held when setting interrupt latch and mask in
pca953x_irq_bus_sync_unlock() in order to avoid races.
The other (non-probe) call site pca953x_gpio_set_multiple() ensures the
lock is held before calling pca953x_write_regs().
The problem occurred when a request raced against irq_bus_sync_unlock()
approximately once per thousand reboots on an i.MX8MP based system.
* Normal case
0-0022: write register AI|3a {03,02,00,00,01} Input latch P0
0-0022: write register AI|49 {fc,fd,ff,ff,fe} Interrupt mask P0
0-0022: write register AI|08 {ff,00,00,00,00} Output P3
0-0022: write register AI|12 {fc,00,00,00,00} Config P3
* Race case
0-0022: write register AI|08 {ff,00,00,00,00} Output P3
0-0022: write register AI|08 {03,02,00,00,01} *** Wrong register ***
0-0022: write register AI|12 {fc,00,00,00,00} Config P3
0-0022: write register AI|49 {fc,fd,ff,ff,fe} Interrupt mask P0 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: cancel all works upon hci_unregister_dev()
syzbot is reporting that calling hci_release_dev() from hci_error_reset()
due to hci_dev_put() from hci_error_reset() can cause deadlock at
destroy_workqueue(), for hci_error_reset() is called from
hdev->req_workqueue which destroy_workqueue() needs to flush.
We need to make sure that hdev->{rx_work,cmd_work,tx_work} which are
queued into hdev->workqueue and hdev->{power_on,error_reset} which are
queued into hdev->req_workqueue are no longer running by the moment
destroy_workqueue(hdev->workqueue);
destroy_workqueue(hdev->req_workqueue);
are called from hci_release_dev().
Call cancel_work_sync() on these work items from hci_unregister_dev()
as soon as hdev->list is removed from hci_dev_list. |
| In the Linux kernel, the following vulnerability has been resolved:
batman-adv: bypass empty buckets in batadv_purge_orig_ref()
Many syzbot reports are pointing to soft lockups in
batadv_purge_orig_ref() [1]
Root cause is unknown, but we can avoid spending too much
time there and perhaps get more interesting reports.
[1]
watchdog: BUG: soft lockup - CPU#0 stuck for 27s! [kworker/u4:6:621]
Modules linked in:
irq event stamp: 6182794
hardirqs last enabled at (6182793): [<ffff8000801dae10>] __local_bh_enable_ip+0x224/0x44c kernel/softirq.c:386
hardirqs last disabled at (6182794): [<ffff80008ad66a78>] __el1_irq arch/arm64/kernel/entry-common.c:533 [inline]
hardirqs last disabled at (6182794): [<ffff80008ad66a78>] el1_interrupt+0x24/0x68 arch/arm64/kernel/entry-common.c:551
softirqs last enabled at (6182792): [<ffff80008aab71c4>] spin_unlock_bh include/linux/spinlock.h:396 [inline]
softirqs last enabled at (6182792): [<ffff80008aab71c4>] batadv_purge_orig_ref+0x114c/0x1228 net/batman-adv/originator.c:1287
softirqs last disabled at (6182790): [<ffff80008aab61dc>] spin_lock_bh include/linux/spinlock.h:356 [inline]
softirqs last disabled at (6182790): [<ffff80008aab61dc>] batadv_purge_orig_ref+0x164/0x1228 net/batman-adv/originator.c:1271
CPU: 0 PID: 621 Comm: kworker/u4:6 Not tainted 6.8.0-rc7-syzkaller-g707081b61156 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024
Workqueue: bat_events batadv_purge_orig
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : should_resched arch/arm64/include/asm/preempt.h:79 [inline]
pc : __local_bh_enable_ip+0x228/0x44c kernel/softirq.c:388
lr : __local_bh_enable_ip+0x224/0x44c kernel/softirq.c:386
sp : ffff800099007970
x29: ffff800099007980 x28: 1fffe00018fce1bd x27: dfff800000000000
x26: ffff0000d2620008 x25: ffff0000c7e70de8 x24: 0000000000000001
x23: 1fffe00018e57781 x22: dfff800000000000 x21: ffff80008aab71c4
x20: ffff0001b40136c0 x19: ffff0000c72bbc08 x18: 1fffe0001a817bb0
x17: ffff800125414000 x16: ffff80008032116c x15: 0000000000000001
x14: 1fffe0001ee9d610 x13: 0000000000000000 x12: 0000000000000003
x11: 0000000000000000 x10: 0000000000ff0100 x9 : 0000000000000000
x8 : 00000000005e5789 x7 : ffff80008aab61dc x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000
x2 : 0000000000000006 x1 : 0000000000000080 x0 : ffff800125414000
Call trace:
__daif_local_irq_enable arch/arm64/include/asm/irqflags.h:27 [inline]
arch_local_irq_enable arch/arm64/include/asm/irqflags.h:49 [inline]
__local_bh_enable_ip+0x228/0x44c kernel/softirq.c:386
__raw_spin_unlock_bh include/linux/spinlock_api_smp.h:167 [inline]
_raw_spin_unlock_bh+0x3c/0x4c kernel/locking/spinlock.c:210
spin_unlock_bh include/linux/spinlock.h:396 [inline]
batadv_purge_orig_ref+0x114c/0x1228 net/batman-adv/originator.c:1287
batadv_purge_orig+0x20/0x70 net/batman-adv/originator.c:1300
process_one_work+0x694/0x1204 kernel/workqueue.c:2633
process_scheduled_works kernel/workqueue.c:2706 [inline]
worker_thread+0x938/0xef4 kernel/workqueue.c:2787
kthread+0x288/0x310 kernel/kthread.c:388
ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860
Sending NMI from CPU 0 to CPUs 1:
NMI backtrace for cpu 1
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.8.0-rc7-syzkaller-g707081b61156 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : arch_local_irq_enable+0x8/0xc arch/arm64/include/asm/irqflags.h:51
lr : default_idle_call+0xf8/0x128 kernel/sched/idle.c:103
sp : ffff800093a17d30
x29: ffff800093a17d30 x28: dfff800000000000 x27: 1ffff00012742fb4
x26: ffff80008ec9d000 x25: 0000000000000000 x24: 0000000000000002
x23: 1ffff00011d93a74 x22: ffff80008ec9d3a0 x21: 0000000000000000
x20: ffff0000c19dbc00 x19: ffff8000802d0fd8 x18: 1fffe00036804396
x17: ffff80008ec9d000 x16: ffff8000802d089c x15: 0000000000000001
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: do not create EA inode under buffer lock
ext4_xattr_set_entry() creates new EA inodes while holding buffer lock
on the external xattr block. This is problematic as it nests all the
allocation locking (which acquires locks on other buffers) under the
buffer lock. This can even deadlock when the filesystem is corrupted and
e.g. quota file is setup to contain xattr block as data block. Move the
allocation of EA inode out of ext4_xattr_set_entry() into the callers. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: imx: Introduce timeout when waiting on transmitter empty
By waiting at most 1 second for USR2_TXDC to be set, we avoid a potential
deadlock.
In case of the timeout, there is not much we can do, so we simply ignore
the transmitter state and optimistically try to continue. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: lpi2c: Avoid calling clk_get_rate during transfer
Instead of repeatedly calling clk_get_rate for each transfer, lock
the clock rate and cache the value.
A deadlock has been observed while adding tlv320aic32x4 audio codec to
the system. When this clock provider adds its clock, the clk mutex is
locked already, it needs to access i2c, which in return needs the mutex
for clk_get_rate as well. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential hang in nilfs_detach_log_writer()
Syzbot has reported a potential hang in nilfs_detach_log_writer() called
during nilfs2 unmount.
Analysis revealed that this is because nilfs_segctor_sync(), which
synchronizes with the log writer thread, can be called after
nilfs_segctor_destroy() terminates that thread, as shown in the call trace
below:
nilfs_detach_log_writer
nilfs_segctor_destroy
nilfs_segctor_kill_thread --> Shut down log writer thread
flush_work
nilfs_iput_work_func
nilfs_dispose_list
iput
nilfs_evict_inode
nilfs_transaction_commit
nilfs_construct_segment (if inode needs sync)
nilfs_segctor_sync --> Attempt to synchronize with
log writer thread
*** DEADLOCK ***
Fix this issue by changing nilfs_segctor_sync() so that the log writer
thread returns normally without synchronizing after it terminates, and by
forcing tasks that are already waiting to complete once after the thread
terminates.
The skipped inode metadata flushout will then be processed together in the
subsequent cleanup work in nilfs_segctor_destroy(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up()
lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the
hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the
hbalock to avoid potential deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
smb3: missing lock when picking channel
Coverity spotted a place where we should have been holding the
channel lock when accessing the ses channel index.
Addresses-Coverity: 1582039 ("Data race condition (MISSING_LOCK)") |
| In the Linux kernel, the following vulnerability has been resolved:
smb3: fix lock ordering potential deadlock in cifs_sync_mid_result
Coverity spotted that the cifs_sync_mid_result function could deadlock
"Thread deadlock (ORDER_REVERSAL) lock_order: Calling spin_lock acquires
lock TCP_Server_Info.srv_lock while holding lock TCP_Server_Info.mid_lock"
Addresses-Coverity: 1590401 ("Thread deadlock (ORDER_REVERSAL)") |
| In the Linux kernel, the following vulnerability has been resolved:
dm snapshot: fix lockup in dm_exception_table_exit
There was reported lockup when we exit a snapshot with many exceptions.
Fix this by adding "cond_resched" to the loop that frees the exceptions. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock with fiemap and extent locking
While working on the patchset to remove extent locking I got a lockdep
splat with fiemap and pagefaulting with my new extent lock replacement
lock.
This deadlock exists with our normal code, we just don't have lockdep
annotations with the extent locking so we've never noticed it.
Since we're copying the fiemap extent to user space on every iteration
we have the chance of pagefaulting. Because we hold the extent lock for
the entire range we could mkwrite into a range in the file that we have
mmap'ed. This would deadlock with the following stack trace
[<0>] lock_extent+0x28d/0x2f0
[<0>] btrfs_page_mkwrite+0x273/0x8a0
[<0>] do_page_mkwrite+0x50/0xb0
[<0>] do_fault+0xc1/0x7b0
[<0>] __handle_mm_fault+0x2fa/0x460
[<0>] handle_mm_fault+0xa4/0x330
[<0>] do_user_addr_fault+0x1f4/0x800
[<0>] exc_page_fault+0x7c/0x1e0
[<0>] asm_exc_page_fault+0x26/0x30
[<0>] rep_movs_alternative+0x33/0x70
[<0>] _copy_to_user+0x49/0x70
[<0>] fiemap_fill_next_extent+0xc8/0x120
[<0>] emit_fiemap_extent+0x4d/0xa0
[<0>] extent_fiemap+0x7f8/0xad0
[<0>] btrfs_fiemap+0x49/0x80
[<0>] __x64_sys_ioctl+0x3e1/0xb50
[<0>] do_syscall_64+0x94/0x1a0
[<0>] entry_SYSCALL_64_after_hwframe+0x6e/0x76
I wrote an fstest to reproduce this deadlock without my replacement lock
and verified that the deadlock exists with our existing locking.
To fix this simply don't take the extent lock for the entire duration of
the fiemap. This is safe in general because we keep track of where we
are when we're searching the tree, so if an ordered extent updates in
the middle of our fiemap call we'll still emit the correct extents
because we know what offset we were on before.
The only place we maintain the lock is searching delalloc. Since the
delalloc stuff can change during writeback we want to lock the extent
range so we have a consistent view of delalloc at the time we're
checking to see if we need to set the delalloc flag.
With this patch applied we no longer deadlock with my testcase. |
| In the Linux kernel, the following vulnerability has been resolved:
dm-raid456, md/raid456: fix a deadlock for dm-raid456 while io concurrent with reshape
For raid456, if reshape is still in progress, then IO across reshape
position will wait for reshape to make progress. However, for dm-raid,
in following cases reshape will never make progress hence IO will hang:
1) the array is read-only;
2) MD_RECOVERY_WAIT is set;
3) MD_RECOVERY_FROZEN is set;
After commit c467e97f079f ("md/raid6: use valid sector values to determine
if an I/O should wait on the reshape") fix the problem that IO across
reshape position doesn't wait for reshape, the dm-raid test
shell/lvconvert-raid-reshape.sh start to hang:
[root@fedora ~]# cat /proc/979/stack
[<0>] wait_woken+0x7d/0x90
[<0>] raid5_make_request+0x929/0x1d70 [raid456]
[<0>] md_handle_request+0xc2/0x3b0 [md_mod]
[<0>] raid_map+0x2c/0x50 [dm_raid]
[<0>] __map_bio+0x251/0x380 [dm_mod]
[<0>] dm_submit_bio+0x1f0/0x760 [dm_mod]
[<0>] __submit_bio+0xc2/0x1c0
[<0>] submit_bio_noacct_nocheck+0x17f/0x450
[<0>] submit_bio_noacct+0x2bc/0x780
[<0>] submit_bio+0x70/0xc0
[<0>] mpage_readahead+0x169/0x1f0
[<0>] blkdev_readahead+0x18/0x30
[<0>] read_pages+0x7c/0x3b0
[<0>] page_cache_ra_unbounded+0x1ab/0x280
[<0>] force_page_cache_ra+0x9e/0x130
[<0>] page_cache_sync_ra+0x3b/0x110
[<0>] filemap_get_pages+0x143/0xa30
[<0>] filemap_read+0xdc/0x4b0
[<0>] blkdev_read_iter+0x75/0x200
[<0>] vfs_read+0x272/0x460
[<0>] ksys_read+0x7a/0x170
[<0>] __x64_sys_read+0x1c/0x30
[<0>] do_syscall_64+0xc6/0x230
[<0>] entry_SYSCALL_64_after_hwframe+0x6c/0x74
This is because reshape can't make progress.
For md/raid, the problem doesn't exist because register new sync_thread
doesn't rely on the IO to be done any more:
1) If array is read-only, it can switch to read-write by ioctl/sysfs;
2) md/raid never set MD_RECOVERY_WAIT;
3) If MD_RECOVERY_FROZEN is set, mddev_suspend() doesn't hold
'reconfig_mutex', hence it can be cleared and reshape can continue by
sysfs api 'sync_action'.
However, I'm not sure yet how to avoid the problem in dm-raid yet. This
patch on the one hand make sure raid_message() can't change
sync_thread() through raid_message() after presuspend(), on the other
hand detect the above 3 cases before wait for IO do be done in
dm_suspend(), and let dm-raid requeue those IO. |