CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Windows Kernel Elevation of Privilege Vulnerability |
Windows Resume Extensible Firmware Interface Security Feature Bypass Vulnerability |
Windows Print Spooler Elevation of Privilege Vulnerability |
Windows Secure Kernel Mode Elevation of Privilege Vulnerability |
Untrusted pointer dereference in Windows Subsystem for Linux allows an unauthorized attacker to execute code locally. |
Untrusted pointer dereference in Microsoft Office allows an unauthorized attacker to execute code locally. |
Microsoft Excel Remote Code Execution Vulnerability |
Microsoft Word Remote Code Execution Vulnerability |
Memory corruption while reading ACPI config through the user mode app. |
AMI’s SPx contains
a vulnerability in the BMC where an Attacker may cause an
untrusted pointer to dereference via a local network. A successful exploitation
of this vulnerability may lead to a loss of confidentiality, integrity, and/or
availability.
|
AMI’s SPx contains
a vulnerability in the BMC where an Attacker
may cause an untrusted pointer to dereference by a local network. A successful
exploitation of this vulnerability may lead to a loss of confidentiality,
integrity, and/or availability.
|
Windows Message Queuing Client (MSMQC) Information Disclosure |
Windows Message Queuing Client (MSMQC) Information Disclosure |
Win32k Elevation of Privilege Vulnerability |
In the Linux kernel, the following vulnerability has been resolved:
Both cadence-quadspi ->runtime_suspend() and ->runtime_resume()
implementations start with:
struct cqspi_st *cqspi = dev_get_drvdata(dev);
struct spi_controller *host = dev_get_drvdata(dev);
This obviously cannot be correct, unless "struct cqspi_st" is the
first member of " struct spi_controller", or the other way around, but
it is not the case. "struct spi_controller" is allocated by
devm_spi_alloc_host(), which allocates an extra amount of memory for
private data, used to store "struct cqspi_st".
The ->probe() function of the cadence-quadspi driver then sets the
device drvdata to store the address of the "struct cqspi_st"
structure. Therefore:
struct cqspi_st *cqspi = dev_get_drvdata(dev);
is correct, but:
struct spi_controller *host = dev_get_drvdata(dev);
is not, as it makes "host" point not to a "struct spi_controller" but
to the same "struct cqspi_st" structure as above.
This obviously leads to bad things (memory corruption, kernel crashes)
directly during ->probe(), as ->probe() enables the device using PM
runtime, leading the ->runtime_resume() hook being called, which in
turns calls spi_controller_resume() with the wrong pointer.
This has at least been reported [0] to cause a kernel crash, but the
exact behavior will depend on the memory contents.
[0] https://lore.kernel.org/all/20240226121803.5a7r5wkpbbowcxgx@dhruva/
This issue potentially affects all platforms that are currently using
the cadence-quadspi driver. |
PDF-XChange Editor EMF File Parsing Untrusted Pointer Dereference Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of PDF-XChange Editor. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of EMF files. The issue results from the lack of proper validation of a user-supplied value prior to dereferencing it as a pointer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-18766. |
PDF-XChange Editor OXPS File Parsing Untrusted Pointer Dereference Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of PDF-XChange Editor. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of OXPS files. The issue results from the lack of proper validation of a user-supplied value prior to dereferencing it as a pointer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-20034. |
PDF-XChange Editor App Untrusted Pointer Dereference Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of PDF-XChange Editor. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the handling of App objects. The issue results from the lack of proper validation of a user-supplied value prior to dereferencing it as a pointer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-20729. |
PDF-XChange Editor JavaScript String Untrusted Pointer Dereference Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of PDF-XChange Editor. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the handling of strings. The issue results from the lack of proper validation of a user-supplied value prior to dereferencing it as a pointer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-20730. |
Untrusted pointer dereference for some Intel(R) Graphics Drivers may allow an authenticated user to potentially enable escalation of privilege via local access. |