| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
iommu: Clear iommu-dma ops on cleanup
If iommu_device_register() encounters an error, it can end up tearing
down already-configured groups and default domains, however this
currently still leaves devices hooked up to iommu-dma (and even
historically the behaviour in this area was at best inconsistent across
architectures/drivers...) Although in the case that an IOMMU is present
whose driver has failed to probe, users cannot necessarily expect DMA to
work anyway, it's still arguable that we should do our best to put
things back as if the IOMMU driver was never there at all, and certainly
the potential for crashing in iommu-dma itself is undesirable. Make sure
we clean up the dev->dma_iommu flag along with everything else. |
| In the Linux kernel, the following vulnerability has been resolved:
igc: fix PTM cycle trigger logic
Writing to clear the PTM status 'valid' bit while the PTM cycle is
triggered results in unreliable PTM operation. To fix this, clear the
PTM 'trigger' and status after each PTM transaction.
The issue can be reproduced with the following:
$ sudo phc2sys -R 1000 -O 0 -i tsn0 -m
Note: 1000 Hz (-R 1000) is unrealistically large, but provides a way to
quickly reproduce the issue.
PHC2SYS exits with:
"ioctl PTP_OFFSET_PRECISE: Connection timed out" when the PTM transaction
fails
This patch also fixes a hang in igc_probe() when loading the igc
driver in the kdump kernel on systems supporting PTM.
The igc driver running in the base kernel enables PTM trigger in
igc_probe(). Therefore the driver is always in PTM trigger mode,
except in brief periods when manually triggering a PTM cycle.
When a crash occurs, the NIC is reset while PTM trigger is enabled.
Due to a hardware problem, the NIC is subsequently in a bad busmaster
state and doesn't handle register reads/writes. When running
igc_probe() in the kdump kernel, the first register access to a NIC
register hangs driver probing and ultimately breaks kdump.
With this patch, igc has PTM trigger disabled most of the time,
and the trigger is only enabled for very brief (10 - 100 us) periods
when manually triggering a PTM cycle. Chances that a crash occurs
during a PTM trigger are not 0, but extremely reduced. |
| In the Linux kernel, the following vulnerability has been resolved:
eth: bnxt: fix missing ring index trim on error path
Commit under Fixes converted tx_prod to be free running but missed
masking it on the Tx error path. This crashes on error conditions,
for example when DMA mapping fails. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: decrease sc_count directly if fail to queue dl_recall
A deadlock warning occurred when invoking nfs4_put_stid following a failed
dl_recall queue operation:
T1 T2
nfs4_laundromat
nfs4_get_client_reaplist
nfs4_anylock_blockers
__break_lease
spin_lock // ctx->flc_lock
spin_lock // clp->cl_lock
nfs4_lockowner_has_blockers
locks_owner_has_blockers
spin_lock // flctx->flc_lock
nfsd_break_deleg_cb
nfsd_break_one_deleg
nfs4_put_stid
refcount_dec_and_lock
spin_lock // clp->cl_lock
When a file is opened, an nfs4_delegation is allocated with sc_count
initialized to 1, and the file_lease holds a reference to the delegation.
The file_lease is then associated with the file through kernel_setlease.
The disassociation is performed in nfsd4_delegreturn via the following
call chain:
nfsd4_delegreturn --> destroy_delegation --> destroy_unhashed_deleg -->
nfs4_unlock_deleg_lease --> kernel_setlease --> generic_delete_lease
The corresponding sc_count reference will be released after this
disassociation.
Since nfsd_break_one_deleg executes while holding the flc_lock, the
disassociation process becomes blocked when attempting to acquire flc_lock
in generic_delete_lease. This means:
1) sc_count in nfsd_break_one_deleg will not be decremented to 0;
2) The nfs4_put_stid called by nfsd_break_one_deleg will not attempt to
acquire cl_lock;
3) Consequently, no deadlock condition is created.
Given that sc_count in nfsd_break_one_deleg remains non-zero, we can
safely perform refcount_dec on sc_count directly. This approach
effectively avoids triggering deadlock warnings. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: dts: qcom: sc7280: Mark PCIe controller as cache coherent
If the controller is not marked as cache coherent, then kernel will
try to ensure coherency during dma-ops and that may cause data corruption.
So, mark the PCIe node as dma-coherent as the devices on PCIe bus are
cache coherent. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Do not set DRR on pipe Commit
[WHY]
Writing to DRR registers such as OTG_V_TOTAL_MIN on the same frame as a
pipe commit can cause underflow. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Perform lockless command completion in abort path
While adding and removing the controller, the following call trace was
observed:
WARNING: CPU: 3 PID: 623596 at kernel/dma/mapping.c:532 dma_free_attrs+0x33/0x50
CPU: 3 PID: 623596 Comm: sh Kdump: loaded Not tainted 5.14.0-96.el9.x86_64 #1
RIP: 0010:dma_free_attrs+0x33/0x50
Call Trace:
qla2x00_async_sns_sp_done+0x107/0x1b0 [qla2xxx]
qla2x00_abort_srb+0x8e/0x250 [qla2xxx]
? ql_dbg+0x70/0x100 [qla2xxx]
__qla2x00_abort_all_cmds+0x108/0x190 [qla2xxx]
qla2x00_abort_all_cmds+0x24/0x70 [qla2xxx]
qla2x00_abort_isp_cleanup+0x305/0x3e0 [qla2xxx]
qla2x00_remove_one+0x364/0x400 [qla2xxx]
pci_device_remove+0x36/0xa0
__device_release_driver+0x17a/0x230
device_release_driver+0x24/0x30
pci_stop_bus_device+0x68/0x90
pci_stop_and_remove_bus_device_locked+0x16/0x30
remove_store+0x75/0x90
kernfs_fop_write_iter+0x11c/0x1b0
new_sync_write+0x11f/0x1b0
vfs_write+0x1eb/0x280
ksys_write+0x5f/0xe0
do_syscall_64+0x5c/0x80
? do_user_addr_fault+0x1d8/0x680
? do_syscall_64+0x69/0x80
? exc_page_fault+0x62/0x140
? asm_exc_page_fault+0x8/0x30
entry_SYSCALL_64_after_hwframe+0x44/0xae
The command was completed in the abort path during driver unload with a
lock held, causing the warning in abort path. Hence complete the command
without any lock held. |
| In the Linux kernel, the following vulnerability has been resolved:
ca8210: fix mac_len negative array access
This patch fixes a buffer overflow access of skb->data if
ieee802154_hdr_peek_addrs() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix call trace warning and hang when removing amdgpu device
On GPUs with RAS enabled, below call trace and hang are observed when
shutting down device.
v2: use DRM device unplugged flag instead of shutdown flag as the check to
prevent memory wipe in shutdown stage.
[ +0.000000] RIP: 0010:amdgpu_vram_mgr_fini+0x18d/0x1c0 [amdgpu]
[ +0.000001] PKRU: 55555554
[ +0.000001] Call Trace:
[ +0.000001] <TASK>
[ +0.000002] amdgpu_ttm_fini+0x140/0x1c0 [amdgpu]
[ +0.000183] amdgpu_bo_fini+0x27/0xa0 [amdgpu]
[ +0.000184] gmc_v11_0_sw_fini+0x2b/0x40 [amdgpu]
[ +0.000163] amdgpu_device_fini_sw+0xb6/0x510 [amdgpu]
[ +0.000152] amdgpu_driver_release_kms+0x16/0x30 [amdgpu]
[ +0.000090] drm_dev_release+0x28/0x50 [drm]
[ +0.000016] devm_drm_dev_init_release+0x38/0x60 [drm]
[ +0.000011] devm_action_release+0x15/0x20
[ +0.000003] release_nodes+0x40/0xc0
[ +0.000001] devres_release_all+0x9e/0xe0
[ +0.000001] device_unbind_cleanup+0x12/0x80
[ +0.000003] device_release_driver_internal+0xff/0x160
[ +0.000001] driver_detach+0x4a/0x90
[ +0.000001] bus_remove_driver+0x6c/0xf0
[ +0.000001] driver_unregister+0x31/0x50
[ +0.000001] pci_unregister_driver+0x40/0x90
[ +0.000003] amdgpu_exit+0x15/0x120 [amdgpu] |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: tcpm: fix warning when handle discover_identity message
Since both source and sink device can send discover_identity message in
PD3, kernel may dump below warning:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 169 at drivers/usb/typec/tcpm/tcpm.c:1446 tcpm_queue_vdm+0xe0/0xf0
Modules linked in:
CPU: 0 PID: 169 Comm: 1-0050 Not tainted 6.1.1-00038-g6a3c36cf1da2-dirty #567
Hardware name: NXP i.MX8MPlus EVK board (DT)
pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : tcpm_queue_vdm+0xe0/0xf0
lr : tcpm_queue_vdm+0x2c/0xf0
sp : ffff80000c19bcd0
x29: ffff80000c19bcd0 x28: 0000000000000001 x27: ffff0000d11c8ab8
x26: ffff0000d11cc000 x25: 0000000000000000 x24: 00000000ff008081
x23: 0000000000000001 x22: 00000000ff00a081 x21: ffff80000c19bdbc
x20: 0000000000000000 x19: ffff0000d11c8080 x18: ffffffffffffffff
x17: 0000000000000000 x16: 0000000000000000 x15: ffff0000d716f580
x14: 0000000000000001 x13: ffff0000d716f507 x12: 0000000000000001
x11: 0000000000000000 x10: 0000000000000020 x9 : 00000000000ee098
x8 : 00000000ffffffff x7 : 000000000000001c x6 : ffff0000d716f580
x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
x2 : ffff80000c19bdbc x1 : 00000000ff00a081 x0 : 0000000000000004
Call trace:
tcpm_queue_vdm+0xe0/0xf0
tcpm_pd_rx_handler+0x340/0x1ab0
kthread_worker_fn+0xcc/0x18c
kthread+0x10c/0x110
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
Below sequences may trigger this warning:
tcpm_send_discover_work(work)
tcpm_send_vdm(port, USB_SID_PD, CMD_DISCOVER_IDENT, NULL, 0);
tcpm_queue_vdm(port, header, data, count);
port->vdm_state = VDM_STATE_READY;
vdm_state_machine_work(work);
<-- received discover_identity from partner
vdm_run_state_machine(port);
port->vdm_state = VDM_STATE_SEND_MESSAGE;
mod_vdm_delayed_work(port, x);
tcpm_pd_rx_handler(work);
tcpm_pd_data_request(port, msg);
tcpm_handle_vdm_request(port, msg->payload, cnt);
tcpm_queue_vdm(port, response[0], &response[1], rlen - 1);
--> WARN_ON(port->vdm_state > VDM_STATE_DONE);
For this case, the state machine could still send out discover
identity message later if we skip current discover_identity message.
So we should handle the received message firstly and override the pending
discover_identity message without warning in this case. Then, a delayed
send_discover work will send discover_identity message again. |
| In the Linux kernel, the following vulnerability has been resolved:
erspan: do not use skb_mac_header() in ndo_start_xmit()
Drivers should not assume skb_mac_header(skb) == skb->data in their
ndo_start_xmit().
Use skb_network_offset() and skb_transport_offset() which
better describe what is needed in erspan_fb_xmit() and
ip6erspan_tunnel_xmit()
syzbot reported:
WARNING: CPU: 0 PID: 5083 at include/linux/skbuff.h:2873 skb_mac_header include/linux/skbuff.h:2873 [inline]
WARNING: CPU: 0 PID: 5083 at include/linux/skbuff.h:2873 ip6erspan_tunnel_xmit+0x1d9c/0x2d90 net/ipv6/ip6_gre.c:962
Modules linked in:
CPU: 0 PID: 5083 Comm: syz-executor406 Not tainted 6.3.0-rc2-syzkaller-00866-gd4671cb96fa3 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023
RIP: 0010:skb_mac_header include/linux/skbuff.h:2873 [inline]
RIP: 0010:ip6erspan_tunnel_xmit+0x1d9c/0x2d90 net/ipv6/ip6_gre.c:962
Code: 04 02 41 01 de 84 c0 74 08 3c 03 0f 8e 1c 0a 00 00 45 89 b4 24 c8 00 00 00 c6 85 77 fe ff ff 01 e9 33 e7 ff ff e8 b4 27 a1 f8 <0f> 0b e9 b6 e7 ff ff e8 a8 27 a1 f8 49 8d bf f0 0c 00 00 48 b8 00
RSP: 0018:ffffc90003b2f830 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 000000000000ffff RCX: 0000000000000000
RDX: ffff888021273a80 RSI: ffffffff88e1bd4c RDI: 0000000000000003
RBP: ffffc90003b2f9d8 R08: 0000000000000003 R09: 000000000000ffff
R10: 000000000000ffff R11: 0000000000000000 R12: ffff88802b28da00
R13: 00000000000000d0 R14: ffff88807e25b6d0 R15: ffff888023408000
FS: 0000555556a61300(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055e5b11eb6e8 CR3: 0000000027c1b000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__netdev_start_xmit include/linux/netdevice.h:4900 [inline]
netdev_start_xmit include/linux/netdevice.h:4914 [inline]
__dev_direct_xmit+0x504/0x730 net/core/dev.c:4300
dev_direct_xmit include/linux/netdevice.h:3088 [inline]
packet_xmit+0x20a/0x390 net/packet/af_packet.c:285
packet_snd net/packet/af_packet.c:3075 [inline]
packet_sendmsg+0x31a0/0x5150 net/packet/af_packet.c:3107
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg+0xde/0x190 net/socket.c:747
__sys_sendto+0x23a/0x340 net/socket.c:2142
__do_sys_sendto net/socket.c:2154 [inline]
__se_sys_sendto net/socket.c:2150 [inline]
__x64_sys_sendto+0xe1/0x1b0 net/socket.c:2150
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f123aaa1039
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 b1 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffc15d12058 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f123aaa1039
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 0000000000000000 R08: 0000000020000040 R09: 0000000000000014
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f123aa648c0
R13: 431bde82d7b634db R14: 0000000000000000 R15: 0000000000000000 |
| Some Samsung devices include the SIMalliance Toolbox Browser (aka S@T Browser) on the UICC, which might allow remote attackers to retrieve location and IMEI information, or retrieve other data or execute certain commands, via SIM Toolkit (STK) instructions in an SMS message, aka Simjacker. |
| When BIG-IP Next Central Manager is running, undisclosed requests to the BIG-IP Next Central Manager API can cause the BIG-IP Next Central Manager Node's Kubernetes service to terminate.
Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. |
| In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix WARNING in ip_vs_app_net_cleanup()
During the initialization of ip_vs_app_net_init(), if file ip_vs_app
fails to be created, the initialization is successful by default.
Therefore, the ip_vs_app file doesn't be found during the remove in
ip_vs_app_net_cleanup(). It will cause WRNING.
The following is the stack information:
name 'ip_vs_app'
WARNING: CPU: 1 PID: 9 at fs/proc/generic.c:712 remove_proc_entry+0x389/0x460
Modules linked in:
Workqueue: netns cleanup_net
RIP: 0010:remove_proc_entry+0x389/0x460
Call Trace:
<TASK>
ops_exit_list+0x125/0x170
cleanup_net+0x4ea/0xb00
process_one_work+0x9bf/0x1710
worker_thread+0x665/0x1080
kthread+0x2e4/0x3a0
ret_from_fork+0x1f/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix WARNING in __ip_vs_cleanup_batch()
During the initialization of ip_vs_conn_net_init(), if file ip_vs_conn
or ip_vs_conn_sync fails to be created, the initialization is successful
by default. Therefore, the ip_vs_conn or ip_vs_conn_sync file doesn't
be found during the remove.
The following is the stack information:
name 'ip_vs_conn_sync'
WARNING: CPU: 3 PID: 9 at fs/proc/generic.c:712
remove_proc_entry+0x389/0x460
Modules linked in:
Workqueue: netns cleanup_net
RIP: 0010:remove_proc_entry+0x389/0x460
Call Trace:
<TASK>
__ip_vs_cleanup_batch+0x7d/0x120
ops_exit_list+0x125/0x170
cleanup_net+0x4ea/0xb00
process_one_work+0x9bf/0x1710
worker_thread+0x665/0x1080
kthread+0x2e4/0x3a0
ret_from_fork+0x1f/0x30
</TASK> |
| Multiple unspecified vulnerabilities in Adobe Reader and Acrobat before 8.1.2 have unknown impact and attack vectors. |
| A maliciously crafted file, when executed on the victim's machine, can lead to privilege escalation to NT AUTHORITY/SYSTEM due to an insufficient validation of loaded binaries. An attacker with local and low-privilege access could exploit this to execute code as SYSTEM. |
| The issue was addressed with improved checks. This issue is fixed in macOS Ventura 13.7.5, iPadOS 17.7.6, macOS Sequoia 15.4, macOS Sonoma 14.7.5, iOS 18.4 and iPadOS 18.4, tvOS 18.4, visionOS 2.4, watchOS 11.4. An app may be able to modify protected parts of the file system. |
| A vulnerability was found in GraphQL due to improper access controls on the GraphQL introspection query. This flaw allows unauthorized users to retrieve a comprehensive list of available queries and mutations. Exposure to this flaw increases the attack surface, as it can facilitate the discovery of flaws or errors specific to the application's GraphQL implementation. |
| Improper access control in Windows SMB Server allows an authorized attacker to elevate privileges over a network. |