CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Ashlar-Vellum Cobalt AR File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of AR files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26049. |
Ashlar-Vellum Cobalt XE File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of XE files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26238. |
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix crash when mount with quota enabled
There is a reported crash when mounting ocfs2 with quota enabled.
RIP: 0010:ocfs2_qinfo_lock_res_init+0x44/0x50 [ocfs2]
Call Trace:
ocfs2_local_read_info+0xb9/0x6f0 [ocfs2]
dquot_load_quota_sb+0x216/0x470
dquot_load_quota_inode+0x85/0x100
ocfs2_enable_quotas+0xa0/0x1c0 [ocfs2]
ocfs2_fill_super.cold+0xc8/0x1bf [ocfs2]
mount_bdev+0x185/0x1b0
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
path_mount+0x465/0xac0
__x64_sys_mount+0x103/0x140
It is caused by when initializing dqi_gqlock, the corresponding dqi_type
and dqi_sb are not properly initialized.
This issue is introduced by commit 6c85c2c72819, which wants to avoid
accessing uninitialized variables in error cases. So make global quota
info properly initialized. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: pcm: Fix potential AB/BA lock with buffer_mutex and mmap_lock
syzbot caught a potential deadlock between the PCM
runtime->buffer_mutex and the mm->mmap_lock. It was brought by the
recent fix to cover the racy read/write and other ioctls, and in that
commit, I overlooked a (hopefully only) corner case that may take the
revert lock, namely, the OSS mmap. The OSS mmap operation
exceptionally allows to re-configure the parameters inside the OSS
mmap syscall, where mm->mmap_mutex is already held. Meanwhile, the
copy_from/to_user calls at read/write operations also take the
mm->mmap_lock internally, hence it may lead to a AB/BA deadlock.
A similar problem was already seen in the past and we fixed it with a
refcount (in commit b248371628aa). The former fix covered only the
call paths with OSS read/write and OSS ioctls, while we need to cover
the concurrent access via both ALSA and OSS APIs now.
This patch addresses the problem above by replacing the buffer_mutex
lock in the read/write operations with a refcount similar as we've
used for OSS. The new field, runtime->buffer_accessing, keeps the
number of concurrent read/write operations. Unlike the former
buffer_mutex protection, this protects only around the
copy_from/to_user() calls; the other codes are basically protected by
the PCM stream lock. The refcount can be a negative, meaning blocked
by the ioctls. If a negative value is seen, the read/write aborts
with -EBUSY. In the ioctl side, OTOH, they check this refcount, too,
and set to a negative value for blocking unless it's already being
accessed. |
In the Linux kernel, the following vulnerability has been resolved:
cifs: prevent bad output lengths in smb2_ioctl_query_info()
When calling smb2_ioctl_query_info() with
smb_query_info::flags=PASSTHRU_FSCTL and
smb_query_info::output_buffer_length=0, the following would return
0x10
buffer = memdup_user(arg + sizeof(struct smb_query_info),
qi.output_buffer_length);
if (IS_ERR(buffer)) {
kfree(vars);
return PTR_ERR(buffer);
}
rather than a valid pointer thus making IS_ERR() check fail. This
would then cause a NULL ptr deference in @buffer when accessing it
later in smb2_ioctl_query_ioctl(). While at it, prevent having a
@buffer smaller than 8 bytes to correctly handle SMB2_SET_INFO
FileEndOfFileInformation requests when
smb_query_info::flags=PASSTHRU_SET_INFO.
Here is a small C reproducer which triggers a NULL ptr in @buffer when
passing an invalid smb_query_info::flags
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#define die(s) perror(s), exit(1)
#define QUERY_INFO 0xc018cf07
int main(int argc, char *argv[])
{
int fd;
if (argc < 2)
exit(1);
fd = open(argv[1], O_RDONLY);
if (fd == -1)
die("open");
if (ioctl(fd, QUERY_INFO, (uint32_t[]) { 0, 0, 0, 4, 0, 0}) == -1)
die("ioctl");
close(fd);
return 0;
}
mount.cifs //srv/share /mnt -o ...
gcc repro.c && ./a.out /mnt/f0
[ 114.138620] general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN NOPTI
[ 114.139310] KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
[ 114.139775] CPU: 2 PID: 995 Comm: a.out Not tainted 5.17.0-rc8 #1
[ 114.140148] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.15.0-0-g2dd4b9b-rebuilt.opensuse.org 04/01/2014
[ 114.140818] RIP: 0010:smb2_ioctl_query_info+0x206/0x410 [cifs]
[ 114.141221] Code: 00 00 00 00 fc ff df 48 c1 ea 03 80 3c 02 00 0f 85 c8 01 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8b 7b 28 4c 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 9c 01 00 00 49 8b 3f e8 58 02 fb ff 48 8b 14 24
[ 114.142348] RSP: 0018:ffffc90000b47b00 EFLAGS: 00010256
[ 114.142692] RAX: dffffc0000000000 RBX: ffff888115503200 RCX: ffffffffa020580d
[ 114.143119] RDX: 0000000000000000 RSI: 0000000000000004 RDI: ffffffffa043a380
[ 114.143544] RBP: ffff888115503278 R08: 0000000000000001 R09: 0000000000000003
[ 114.143983] R10: fffffbfff4087470 R11: 0000000000000001 R12: ffff888115503288
[ 114.144424] R13: 00000000ffffffea R14: ffff888115503228 R15: 0000000000000000
[ 114.144852] FS: 00007f7aeabdf740(0000) GS:ffff888151600000(0000) knlGS:0000000000000000
[ 114.145338] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 114.145692] CR2: 00007f7aeacfdf5e CR3: 000000012000e000 CR4: 0000000000350ee0
[ 114.146131] Call Trace:
[ 114.146291] <TASK>
[ 114.146432] ? smb2_query_reparse_tag+0x890/0x890 [cifs]
[ 114.146800] ? cifs_mapchar+0x460/0x460 [cifs]
[ 114.147121] ? rcu_read_lock_sched_held+0x3f/0x70
[ 114.147412] ? cifs_strndup_to_utf16+0x15b/0x250 [cifs]
[ 114.147775] ? dentry_path_raw+0xa6/0xf0
[ 114.148024] ? cifs_convert_path_to_utf16+0x198/0x220 [cifs]
[ 114.148413] ? smb2_check_message+0x1080/0x1080 [cifs]
[ 114.148766] ? rcu_read_lock_sched_held+0x3f/0x70
[ 114.149065] cifs_ioctl+0x1577/0x3320 [cifs]
[ 114.149371] ? lock_downgrade+0x6f0/0x6f0
[ 114.149631] ? cifs_readdir+0x2e60/0x2e60 [cifs]
[ 114.149956] ? rcu_read_lock_sched_held+0x3f/0x70
[ 114.150250] ? __rseq_handle_notify_resume+0x80b/0xbe0
[ 114.150562] ? __up_read+0x192/0x710
[ 114.150791] ? __ia32_sys_rseq+0xf0/0xf0
[ 114.151025] ? __x64_sys_openat+0x11f/0x1d0
[ 114.151296] __x64_sys_ioctl+0x127/0x190
[ 114.151549] do_syscall_64+0x3b/0x90
[ 114.151768] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 114.152079] RIP: 0033:0x7f7aead043df
[ 114.152306] Code: 00 48 89 44 24 18 31 c0 48 8d 44 24 60 c7 04 24
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Intel: Fix NULL ptr dereference when ENOMEM
Do not call snd_dma_free_pages() when snd_dma_alloc_pages() returns
-ENOMEM because it leads to a NULL pointer dereference bug.
The dmesg says:
[ T1387] sof-audio-pci-intel-tgl 0000:00:1f.3: error: memory alloc failed: -12
[ T1387] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ T1387] #PF: supervisor read access in kernel mode
[ T1387] #PF: error_code(0x0000) - not-present page
[ T1387] PGD 0 P4D 0
[ T1387] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ T1387] CPU: 6 PID: 1387 Comm: alsa-sink-HDA A Tainted: G W 5.17.0-rc4-superb-owl-00055-g80d47f5de5e3
[ T1387] Hardware name: HP HP Laptop 14s-dq2xxx/87FD, BIOS F.15 09/15/2021
[ T1387] RIP: 0010:dma_free_noncontiguous+0x37/0x80
[ T1387] Code: [... snip ...]
[ T1387] RSP: 0000:ffffc90002b87770 EFLAGS: 00010246
[ T1387] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ T1387] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff888101db30d0
[ T1387] RBP: 00000000fffffff4 R08: 0000000000000000 R09: 0000000000000000
[ T1387] R10: 0000000000000000 R11: ffffc90002b874d0 R12: 0000000000000001
[ T1387] R13: 0000000000058000 R14: ffff888105260c68 R15: ffff888105260828
[ T1387] FS: 00007f42e2ffd640(0000) GS:ffff888466b80000(0000) knlGS:0000000000000000
[ T1387] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ T1387] CR2: 0000000000000000 CR3: 000000014acf0003 CR4: 0000000000770ee0
[ T1387] PKRU: 55555554
[ T1387] Call Trace:
[ T1387] <TASK>
[ T1387] cl_stream_prepare+0x10a/0x120 [snd_sof_intel_hda_common 146addf995b9279ae7f509621078cccbe4f875e1]
[... snip ...]
[ T1387] </TASK> |
In the Linux kernel, the following vulnerability has been resolved:
brcmfmac: pcie: Release firmwares in the brcmf_pcie_setup error path
This avoids leaking memory if brcmf_chip_get_raminfo fails. Note that
the CLM blob is released in the device remove path. |
In the Linux kernel, the following vulnerability has been resolved:
driver core: Fix wait_for_device_probe() & deferred_probe_timeout interaction
Mounting NFS rootfs was timing out when deferred_probe_timeout was
non-zero [1]. This was because ip_auto_config() initcall times out
waiting for the network interfaces to show up when
deferred_probe_timeout was non-zero. While ip_auto_config() calls
wait_for_device_probe() to make sure any currently running deferred
probe work or asynchronous probe finishes, that wasn't sufficient to
account for devices being deferred until deferred_probe_timeout.
Commit 35a672363ab3 ("driver core: Ensure wait_for_device_probe() waits
until the deferred_probe_timeout fires") tried to fix that by making
sure wait_for_device_probe() waits for deferred_probe_timeout to expire
before returning.
However, if wait_for_device_probe() is called from the kernel_init()
context:
- Before deferred_probe_initcall() [2], it causes the boot process to
hang due to a deadlock.
- After deferred_probe_initcall() [3], it blocks kernel_init() from
continuing till deferred_probe_timeout expires and beats the point of
deferred_probe_timeout that's trying to wait for userspace to load
modules.
Neither of this is good. So revert the changes to
wait_for_device_probe().
[1] - https://lore.kernel.org/lkml/TYAPR01MB45443DF63B9EF29054F7C41FD8C60@TYAPR01MB4544.jpnprd01.prod.outlook.com/
[2] - https://lore.kernel.org/lkml/YowHNo4sBjr9ijZr@dev-arch.thelio-3990X/
[3] - https://lore.kernel.org/lkml/Yo3WvGnNk3LvLb7R@linutronix.de/ |
In the Linux kernel, the following vulnerability has been resolved:
net: mdio: unexport __init-annotated mdio_bus_init()
EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.
modpost used to detect it, but it has been broken for a decade.
Recently, I fixed modpost so it started to warn it again, then this
showed up in linux-next builds.
There are two ways to fix it:
- Remove __init
- Remove EXPORT_SYMBOL
I chose the latter for this case because the only in-tree call-site,
drivers/net/phy/phy_device.c is never compiled as modular.
(CONFIG_PHYLIB is boolean) |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix bug_on in ext4_writepages
we got issue as follows:
EXT4-fs error (device loop0): ext4_mb_generate_buddy:1141: group 0, block bitmap and bg descriptor inconsistent: 25 vs 31513 free cls
------------[ cut here ]------------
kernel BUG at fs/ext4/inode.c:2708!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 2 PID: 2147 Comm: rep Not tainted 5.18.0-rc2-next-20220413+ #155
RIP: 0010:ext4_writepages+0x1977/0x1c10
RSP: 0018:ffff88811d3e7880 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff88811c098000
RDX: 0000000000000000 RSI: ffff88811c098000 RDI: 0000000000000002
RBP: ffff888128140f50 R08: ffffffffb1ff6387 R09: 0000000000000000
R10: 0000000000000007 R11: ffffed10250281ea R12: 0000000000000001
R13: 00000000000000a4 R14: ffff88811d3e7bb8 R15: ffff888128141028
FS: 00007f443aed9740(0000) GS:ffff8883aef00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020007200 CR3: 000000011c2a4000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
do_writepages+0x130/0x3a0
filemap_fdatawrite_wbc+0x83/0xa0
filemap_flush+0xab/0xe0
ext4_alloc_da_blocks+0x51/0x120
__ext4_ioctl+0x1534/0x3210
__x64_sys_ioctl+0x12c/0x170
do_syscall_64+0x3b/0x90
It may happen as follows:
1. write inline_data inode
vfs_write
new_sync_write
ext4_file_write_iter
ext4_buffered_write_iter
generic_perform_write
ext4_da_write_begin
ext4_da_write_inline_data_begin -> If inline data size too
small will allocate block to write, then mapping will has
dirty page
ext4_da_convert_inline_data_to_extent ->clear EXT4_STATE_MAY_INLINE_DATA
2. fallocate
do_vfs_ioctl
ioctl_preallocate
vfs_fallocate
ext4_fallocate
ext4_convert_inline_data
ext4_convert_inline_data_nolock
ext4_map_blocks -> fail will goto restore data
ext4_restore_inline_data
ext4_create_inline_data
ext4_write_inline_data
ext4_set_inode_state -> set inode EXT4_STATE_MAY_INLINE_DATA
3. writepages
__ext4_ioctl
ext4_alloc_da_blocks
filemap_flush
filemap_fdatawrite_wbc
do_writepages
ext4_writepages
if (ext4_has_inline_data(inode))
BUG_ON(ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
The root cause of this issue is we destory inline data until call
ext4_writepages under delay allocation mode. But there maybe already
convert from inline to extent. To solve this issue, we call
filemap_flush first.. |
In the Linux kernel, the following vulnerability has been resolved:
net: xfrm: unexport __init-annotated xfrm4_protocol_init()
EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.
modpost used to detect it, but it has been broken for a decade.
Recently, I fixed modpost so it started to warn it again, then this
showed up in linux-next builds.
There are two ways to fix it:
- Remove __init
- Remove EXPORT_SYMBOL
I chose the latter for this case because the only in-tree call-site,
net/ipv4/xfrm4_policy.c is never compiled as modular.
(CONFIG_XFRM is boolean) |
In the Linux kernel, the following vulnerability has been resolved:
net: ipv6: unexport __init-annotated seg6_hmac_init()
EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.
modpost used to detect it, but it has been broken for a decade.
Recently, I fixed modpost so it started to warn it again, then this
showed up in linux-next builds.
There are two ways to fix it:
- Remove __init
- Remove EXPORT_SYMBOL
I chose the latter for this case because the caller (net/ipv6/seg6.c)
and the callee (net/ipv6/seg6_hmac.c) belong to the same module.
It seems an internal function call in ipv6.ko. |
Ashlar-Vellum Cobalt LI File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of LI files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26051. |
Ashlar-Vellum Cobalt XE File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of XE files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26236. |
Ashlar-Vellum Cobalt CO File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26235. |
Ashlar-Vellum Cobalt CO File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26233. |
Ashlar-Vellum Cobalt CO File Parsing Memory Corruption Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a memory corruption condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26053. |
A flaw has been found in Portabilis i-Educar up to 2.10. Affected by this vulnerability is an unknown functionality of the file /intranet/educar_tipo_ensino_cad.php. Executing manipulation of the argument nm_tipo can lead to cross site scripting. The attack can be executed remotely. The exploit has been published and may be used. |
A flaw was found in the libssh library in versions less than 0.11.2. An out-of-bounds read can be triggered in the sftp_handle function due to an incorrect comparison check that permits the function to access memory beyond the valid handle list and to return an invalid pointer, which is used in further processing. This vulnerability allows an authenticated remote attacker to potentially read unintended memory regions, exposing sensitive information or affect service behavior. |
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |