| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: sc7280: Fix missing Soundwire runtime stream alloc
Commit 15c7fab0e047 ("ASoC: qcom: Move Soundwire runtime stream alloc to
soundcards") moved the allocation of Soundwire stream runtime from the
Qualcomm Soundwire driver to each individual machine sound card driver,
except that it forgot to update SC7280 card.
Just like for other Qualcomm sound cards using Soundwire, the card
driver should allocate and release the runtime. Otherwise sound
playback will result in a NULL pointer dereference or other effect of
uninitialized memory accesses (which was confirmed on SDM845 having
similar issue). |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: sdm845: add missing soundwire runtime stream alloc
During the migration of Soundwire runtime stream allocation from
the Qualcomm Soundwire controller to SoC's soundcard drivers the sdm845
soundcard was forgotten.
At this point any playback attempt or audio daemon startup, for instance
on sdm845-db845c (Qualcomm RB3 board), will result in stream pointer
NULL dereference:
Unable to handle kernel NULL pointer dereference at virtual
address 0000000000000020
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=0000000101ecf000
[0000000000000020] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
Modules linked in: ...
CPU: 5 UID: 0 PID: 1198 Comm: aplay
Not tainted 6.12.0-rc2-qcomlt-arm64-00059-g9d78f315a362-dirty #18
Hardware name: Thundercomm Dragonboard 845c (DT)
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : sdw_stream_add_slave+0x44/0x380 [soundwire_bus]
lr : sdw_stream_add_slave+0x44/0x380 [soundwire_bus]
sp : ffff80008a2035c0
x29: ffff80008a2035c0 x28: ffff80008a203978 x27: 0000000000000000
x26: 00000000000000c0 x25: 0000000000000000 x24: ffff1676025f4800
x23: ffff167600ff1cb8 x22: ffff167600ff1c98 x21: 0000000000000003
x20: ffff167607316000 x19: ffff167604e64e80 x18: 0000000000000000
x17: 0000000000000000 x16: ffffcec265074160 x15: 0000000000000000
x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000
x8 : 0000000000000000 x7 : 0000000000000000 x6 : ffff167600ff1cec
x5 : ffffcec22cfa2010 x4 : 0000000000000000 x3 : 0000000000000003
x2 : ffff167613f836c0 x1 : 0000000000000000 x0 : ffff16761feb60b8
Call trace:
sdw_stream_add_slave+0x44/0x380 [soundwire_bus]
wsa881x_hw_params+0x68/0x80 [snd_soc_wsa881x]
snd_soc_dai_hw_params+0x3c/0xa4
__soc_pcm_hw_params+0x230/0x660
dpcm_be_dai_hw_params+0x1d0/0x3f8
dpcm_fe_dai_hw_params+0x98/0x268
snd_pcm_hw_params+0x124/0x460
snd_pcm_common_ioctl+0x998/0x16e8
snd_pcm_ioctl+0x34/0x58
__arm64_sys_ioctl+0xac/0xf8
invoke_syscall+0x48/0x104
el0_svc_common.constprop.0+0x40/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x34/0xe0
el0t_64_sync_handler+0x120/0x12c
el0t_64_sync+0x190/0x194
Code: aa0403fb f9418400 9100e000 9400102f (f8420f22)
---[ end trace 0000000000000000 ]---
0000000000006108 <sdw_stream_add_slave>:
6108: d503233f paciasp
610c: a9b97bfd stp x29, x30, [sp, #-112]!
6110: 910003fd mov x29, sp
6114: a90153f3 stp x19, x20, [sp, #16]
6118: a9025bf5 stp x21, x22, [sp, #32]
611c: aa0103f6 mov x22, x1
6120: 2a0303f5 mov w21, w3
6124: a90363f7 stp x23, x24, [sp, #48]
6128: aa0003f8 mov x24, x0
612c: aa0203f7 mov x23, x2
6130: a9046bf9 stp x25, x26, [sp, #64]
6134: aa0403f9 mov x25, x4 <-- x4 copied to x25
6138: a90573fb stp x27, x28, [sp, #80]
613c: aa0403fb mov x27, x4
6140: f9418400 ldr x0, [x0, #776]
6144: 9100e000 add x0, x0, #0x38
6148: 94000000 bl 0 <mutex_lock>
614c: f8420f22 ldr x2, [x25, #32]! <-- offset 0x44
^^^
This is 0x6108 + offset 0x44 from the beginning of sdw_stream_add_slave()
where data abort happens.
wsa881x_hw_params() is called with stream = NULL and passes it further
in register x4 (5th argu
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
x86: fix user address masking non-canonical speculation issue
It turns out that AMD has a "Meltdown Lite(tm)" issue with non-canonical
accesses in kernel space. And so using just the high bit to decide
whether an access is in user space or kernel space ends up with the good
old "leak speculative data" if you have the right gadget using the
result:
CVE-2020-12965 “Transient Execution of Non-Canonical Accesses“
Now, the kernel surrounds the access with a STAC/CLAC pair, and those
instructions end up serializing execution on older Zen architectures,
which closes the speculation window.
But that was true only up until Zen 5, which renames the AC bit [1].
That improves performance of STAC/CLAC a lot, but also means that the
speculation window is now open.
Note that this affects not just the new address masking, but also the
regular valid_user_address() check used by access_ok(), and the asm
version of the sign bit check in the get_user() helpers.
It does not affect put_user() or clear_user() variants, since there's no
speculative result to be used in a gadget for those operations. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: dummy-hcd: Fix "task hung" problem
The syzbot fuzzer has been encountering "task hung" problems ever
since the dummy-hcd driver was changed to use hrtimers instead of
regular timers. It turns out that the problems are caused by a subtle
difference between the timer_pending() and hrtimer_active() APIs.
The changeover blindly replaced the first by the second. However,
timer_pending() returns True when the timer is queued but not when its
callback is running, whereas hrtimer_active() returns True when the
hrtimer is queued _or_ its callback is running. This difference
occasionally caused dummy_urb_enqueue() to think that the callback
routine had not yet started when in fact it was almost finished. As a
result the hrtimer was not restarted, which made it impossible for the
driver to dequeue later the URB that was just enqueued. This caused
usb_kill_urb() to hang, and things got worse from there.
Since hrtimers have no API for telling when they are queued and the
callback isn't running, the driver must keep track of this for itself.
That's what this patch does, adding a new "timer_pending" flag and
setting or clearing it at the appropriate times. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fec: don't save PTP state if PTP is unsupported
Some platforms (such as i.MX25 and i.MX27) do not support PTP, so on
these platforms fec_ptp_init() is not called and the related members
in fep are not initialized. However, fec_ptp_save_state() is called
unconditionally, which causes the kernel to panic. Therefore, add a
condition so that fec_ptp_save_state() is not called if PTP is not
supported. |
| In the Linux kernel, the following vulnerability has been resolved:
sfc: Don't invoke xdp_do_flush() from netpoll.
Yury reported a crash in the sfc driver originated from
netpoll_send_udp(). The netconsole sends a message and then netpoll
invokes the driver's NAPI function with a budget of zero. It is
dedicated to allow driver to free TX resources, that it may have used
while sending the packet.
In the netpoll case the driver invokes xdp_do_flush() unconditionally,
leading to crash because bpf_net_context was never assigned.
Invoke xdp_do_flush() only if budget is not zero. |
| In the Linux kernel, the following vulnerability has been resolved:
net: netconsole: fix wrong warning
A warning is triggered when there is insufficient space in the buffer
for userdata. However, this is not an issue since userdata will be sent
in the next iteration.
Current warning message:
------------[ cut here ]------------
WARNING: CPU: 13 PID: 3013042 at drivers/net/netconsole.c:1122 write_ext_msg+0x3b6/0x3d0
? write_ext_msg+0x3b6/0x3d0
console_flush_all+0x1e9/0x330
The code incorrectly issues a warning when this_chunk is zero, which is
a valid scenario. The warning should only be triggered when this_chunk
is negative. |
| In the Linux kernel, the following vulnerability has been resolved:
dm vdo: don't refer to dedupe_context after releasing it
Clear the dedupe_context pointer in a data_vio whenever ownership of
the context is lost, so that vdo can't examine it accidentally. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-mq: setup queue ->tag_set before initializing hctx
Commit 7b815817aa58 ("blk-mq: add helper for checking if one CPU is mapped to specified hctx")
needs to check queue mapping via tag set in hctx's cpuhp handler.
However, q->tag_set may not be setup yet when the cpuhp handler is
enabled, then kernel oops is triggered.
Fix the issue by setup queue tag_set before initializing hctx. |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: don't allow user copy for unprivileged device
UBLK_F_USER_COPY requires userspace to call write() on ublk char
device for filling request buffer, and unprivileged device can't
be trusted.
So don't allow user copy for unprivileged device. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/sqpoll: ensure task state is TASK_RUNNING when running task_work
When the sqpoll is exiting and cancels pending work items, it may need
to run task_work. If this happens from within io_uring_cancel_generic(),
then it may be under waiting for the io_uring_task waitqueue. This
results in the below splat from the scheduler, as the ring mutex may be
attempted grabbed while in a TASK_INTERRUPTIBLE state.
Ensure that the task state is set appropriately for that, just like what
is done for the other cases in io_run_task_work().
do not call blocking ops when !TASK_RUNNING; state=1 set at [<0000000029387fd2>] prepare_to_wait+0x88/0x2fc
WARNING: CPU: 6 PID: 59939 at kernel/sched/core.c:8561 __might_sleep+0xf4/0x140
Modules linked in:
CPU: 6 UID: 0 PID: 59939 Comm: iou-sqp-59938 Not tainted 6.12.0-rc3-00113-g8d020023b155 #7456
Hardware name: linux,dummy-virt (DT)
pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
pc : __might_sleep+0xf4/0x140
lr : __might_sleep+0xf4/0x140
sp : ffff80008c5e7830
x29: ffff80008c5e7830 x28: ffff0000d93088c0 x27: ffff60001c2d7230
x26: dfff800000000000 x25: ffff0000e16b9180 x24: ffff80008c5e7a50
x23: 1ffff000118bcf4a x22: ffff0000e16b9180 x21: ffff0000e16b9180
x20: 000000000000011b x19: ffff80008310fac0 x18: 1ffff000118bcd90
x17: 30303c5b20746120 x16: 74657320313d6574 x15: 0720072007200720
x14: 0720072007200720 x13: 0720072007200720 x12: ffff600036c64f0b
x11: 1fffe00036c64f0a x10: ffff600036c64f0a x9 : dfff800000000000
x8 : 00009fffc939b0f6 x7 : ffff0001b6327853 x6 : 0000000000000001
x5 : ffff0001b6327850 x4 : ffff600036c64f0b x3 : ffff8000803c35bc
x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000e16b9180
Call trace:
__might_sleep+0xf4/0x140
mutex_lock+0x84/0x124
io_handle_tw_list+0xf4/0x260
tctx_task_work_run+0x94/0x340
io_run_task_work+0x1ec/0x3c0
io_uring_cancel_generic+0x364/0x524
io_sq_thread+0x820/0x124c
ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
xhci: tegra: fix checked USB2 port number
If USB virtualizatoin is enabled, USB2 ports are shared between all
Virtual Functions. The USB2 port number owned by an USB2 root hub in
a Virtual Function may be less than total USB2 phy number supported
by the Tegra XUSB controller.
Using total USB2 phy number as port number to check all PORTSC values
would cause invalid memory access.
[ 116.923438] Unable to handle kernel paging request at virtual address 006c622f7665642f
...
[ 117.213640] Call trace:
[ 117.216783] tegra_xusb_enter_elpg+0x23c/0x658
[ 117.222021] tegra_xusb_runtime_suspend+0x40/0x68
[ 117.227260] pm_generic_runtime_suspend+0x30/0x50
[ 117.232847] __rpm_callback+0x84/0x3c0
[ 117.237038] rpm_suspend+0x2dc/0x740
[ 117.241229] pm_runtime_work+0xa0/0xb8
[ 117.245769] process_scheduled_works+0x24c/0x478
[ 117.251007] worker_thread+0x23c/0x328
[ 117.255547] kthread+0x104/0x1b0
[ 117.259389] ret_from_fork+0x10/0x20
[ 117.263582] Code: 54000222 f9461ae8 f8747908 b4ffff48 (f9400100) |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: nuvoton: fix a double free in ma35_pinctrl_dt_node_to_map_func()
'new_map' is allocated using devm_* which takes care of freeing the
allocated data on device removal, call to
.dt_free_map = pinconf_generic_dt_free_map
double frees the map as pinconf_generic_dt_free_map() calls
pinctrl_utils_free_map().
Fix this by using kcalloc() instead of auto-managed devm_kcalloc(). |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/tests/sysfs-kunit.h: fix memory leak in damon_sysfs_test_add_targets()
The sysfs_target->regions allocated in damon_sysfs_regions_alloc() is not
freed in damon_sysfs_test_add_targets(), which cause the following memory
leak, free it to fix it.
unreferenced object 0xffffff80c2a8db80 (size 96):
comm "kunit_try_catch", pid 187, jiffies 4294894363
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 0):
[<0000000001e3714d>] kmemleak_alloc+0x34/0x40
[<000000008e6835c1>] __kmalloc_cache_noprof+0x26c/0x2f4
[<000000001286d9f8>] damon_sysfs_test_add_targets+0x1cc/0x738
[<0000000032ef8f77>] kunit_try_run_case+0x13c/0x3ac
[<00000000f3edea23>] kunit_generic_run_threadfn_adapter+0x80/0xec
[<00000000adf936cf>] kthread+0x2e8/0x374
[<0000000041bb1628>] ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: enable all safety features by default
In the original implementation of dwmac5
commit 8bf993a5877e ("net: stmmac: Add support for DWMAC5 and implement Safety Features")
all safety features were enabled by default.
Later it seems some implementations didn't have support for all the
features, so in
commit 5ac712dcdfef ("net: stmmac: enable platform specific safety features")
the safety_feat_cfg structure was added to the callback and defined for
some platforms to selectively enable these safety features.
The problem is that only certain platforms were given that software
support. If the automotive safety package bit is set in the hardware
features register the safety feature callback is called for the platform,
and for platforms that didn't get a safety_feat_cfg defined this results
in the following NULL pointer dereference:
[ 7.933303] Call trace:
[ 7.935812] dwmac5_safety_feat_config+0x20/0x170 [stmmac]
[ 7.941455] __stmmac_open+0x16c/0x474 [stmmac]
[ 7.946117] stmmac_open+0x38/0x70 [stmmac]
[ 7.950414] __dev_open+0x100/0x1dc
[ 7.954006] __dev_change_flags+0x18c/0x204
[ 7.958297] dev_change_flags+0x24/0x6c
[ 7.962237] do_setlink+0x2b8/0xfa4
[ 7.965827] __rtnl_newlink+0x4ec/0x840
[ 7.969766] rtnl_newlink+0x50/0x80
[ 7.973353] rtnetlink_rcv_msg+0x12c/0x374
[ 7.977557] netlink_rcv_skb+0x5c/0x130
[ 7.981500] rtnetlink_rcv+0x18/0x2c
[ 7.985172] netlink_unicast+0x2e8/0x340
[ 7.989197] netlink_sendmsg+0x1a8/0x420
[ 7.993222] ____sys_sendmsg+0x218/0x280
[ 7.997249] ___sys_sendmsg+0xac/0x100
[ 8.001103] __sys_sendmsg+0x84/0xe0
[ 8.004776] __arm64_sys_sendmsg+0x24/0x30
[ 8.008983] invoke_syscall+0x48/0x114
[ 8.012840] el0_svc_common.constprop.0+0xcc/0xec
[ 8.017665] do_el0_svc+0x38/0xb0
[ 8.021071] el0_svc+0x2c/0x84
[ 8.024212] el0t_64_sync_handler+0xf4/0x120
[ 8.028598] el0t_64_sync+0x190/0x194
Go back to the original behavior, if the automotive safety package
is found to be supported in hardware enable all the features unless
safety_feat_cfg is passed in saying this particular platform only
supports a subset of the features. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix potential memory leaks in session setup
Make sure to free cifs_ses::auth_key.response before allocating it as
we might end up leaking memory in reconnect or mounting. |
| In the Linux kernel, the following vulnerability has been resolved:
trace_events_hist: add check for return value of 'create_hist_field'
Function 'create_hist_field' is called recursively at
trace_events_hist.c:1954 and can return NULL-value that's why we have
to check it to avoid null pointer dereference.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Fix a memory leak with reused mmap_offset
drm_vma_node_allow() and drm_vma_node_revoke() should be called in
balanced pairs. We call drm_vma_node_allow() once per-file everytime a
user calls mmap_offset, but only call drm_vma_node_revoke once per-file
on each mmap_offset. As the mmap_offset is reused by the client, the
per-file vm_count may remain non-zero and the rbtree leaked.
Call drm_vma_node_allow_once() instead to prevent that memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
acpi: Fix suspend with Xen PV
Commit f1e525009493 ("x86/boot: Skip realmode init code when running as
Xen PV guest") missed one code path accessing real_mode_header, leading
to dereferencing NULL when suspending the system under Xen:
[ 348.284004] PM: suspend entry (deep)
[ 348.289532] Filesystems sync: 0.005 seconds
[ 348.291545] Freezing user space processes ... (elapsed 0.000 seconds) done.
[ 348.292457] OOM killer disabled.
[ 348.292462] Freezing remaining freezable tasks ... (elapsed 0.104 seconds) done.
[ 348.396612] printk: Suspending console(s) (use no_console_suspend to debug)
[ 348.749228] PM: suspend devices took 0.352 seconds
[ 348.769713] ACPI: EC: interrupt blocked
[ 348.816077] BUG: kernel NULL pointer dereference, address: 000000000000001c
[ 348.816080] #PF: supervisor read access in kernel mode
[ 348.816081] #PF: error_code(0x0000) - not-present page
[ 348.816083] PGD 0 P4D 0
[ 348.816086] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ 348.816089] CPU: 0 PID: 6764 Comm: systemd-sleep Not tainted 6.1.3-1.fc32.qubes.x86_64 #1
[ 348.816092] Hardware name: Star Labs StarBook/StarBook, BIOS 8.01 07/03/2022
[ 348.816093] RIP: e030:acpi_get_wakeup_address+0xc/0x20
Fix that by adding an optional acpi callback allowing to skip setting
the wakeup address, as in the Xen PV case this will be handled by the
hypervisor anyway. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/i8259: Mark legacy PIC interrupts with IRQ_LEVEL
Baoquan reported that after triggering a crash the subsequent crash-kernel
fails to boot about half of the time. It triggers a NULL pointer
dereference in the periodic tick code.
This happens because the legacy timer interrupt (IRQ0) is resent in
software which happens in soft interrupt (tasklet) context. In this context
get_irq_regs() returns NULL which leads to the NULL pointer dereference.
The reason for the resend is a spurious APIC interrupt on the IRQ0 vector
which is captured and leads to a resend when the legacy timer interrupt is
enabled. This is wrong because the legacy PIC interrupts are level
triggered and therefore should never be resent in software, but nothing
ever sets the IRQ_LEVEL flag on those interrupts, so the core code does not
know about their trigger type.
Ensure that IRQ_LEVEL is set when the legacy PCI interrupts are set up. |