Search

Search Results (310781 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50396 1 Linux 1 Linux Kernel 2025-09-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: sched: fix memory leak in tcindex_set_parms Syzkaller reports a memory leak as follows: ==================================== BUG: memory leak unreferenced object 0xffff88810c287f00 (size 256): comm "syz-executor105", pid 3600, jiffies 4294943292 (age 12.990s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff814cf9f0>] kmalloc_trace+0x20/0x90 mm/slab_common.c:1046 [<ffffffff839c9e07>] kmalloc include/linux/slab.h:576 [inline] [<ffffffff839c9e07>] kmalloc_array include/linux/slab.h:627 [inline] [<ffffffff839c9e07>] kcalloc include/linux/slab.h:659 [inline] [<ffffffff839c9e07>] tcf_exts_init include/net/pkt_cls.h:250 [inline] [<ffffffff839c9e07>] tcindex_set_parms+0xa7/0xbe0 net/sched/cls_tcindex.c:342 [<ffffffff839caa1f>] tcindex_change+0xdf/0x120 net/sched/cls_tcindex.c:553 [<ffffffff8394db62>] tc_new_tfilter+0x4f2/0x1100 net/sched/cls_api.c:2147 [<ffffffff8389e91c>] rtnetlink_rcv_msg+0x4dc/0x5d0 net/core/rtnetlink.c:6082 [<ffffffff839eba67>] netlink_rcv_skb+0x87/0x1d0 net/netlink/af_netlink.c:2540 [<ffffffff839eab87>] netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline] [<ffffffff839eab87>] netlink_unicast+0x397/0x4c0 net/netlink/af_netlink.c:1345 [<ffffffff839eb046>] netlink_sendmsg+0x396/0x710 net/netlink/af_netlink.c:1921 [<ffffffff8383e796>] sock_sendmsg_nosec net/socket.c:714 [inline] [<ffffffff8383e796>] sock_sendmsg+0x56/0x80 net/socket.c:734 [<ffffffff8383eb08>] ____sys_sendmsg+0x178/0x410 net/socket.c:2482 [<ffffffff83843678>] ___sys_sendmsg+0xa8/0x110 net/socket.c:2536 [<ffffffff838439c5>] __sys_sendmmsg+0x105/0x330 net/socket.c:2622 [<ffffffff83843c14>] __do_sys_sendmmsg net/socket.c:2651 [inline] [<ffffffff83843c14>] __se_sys_sendmmsg net/socket.c:2648 [inline] [<ffffffff83843c14>] __x64_sys_sendmmsg+0x24/0x30 net/socket.c:2648 [<ffffffff84605fd5>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff84605fd5>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 [<ffffffff84800087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd ==================================== Kernel uses tcindex_change() to change an existing filter properties. Yet the problem is that, during the process of changing, if `old_r` is retrieved from `p->perfect`, then kernel uses tcindex_alloc_perfect_hash() to newly allocate filter results, uses tcindex_filter_result_init() to clear the old filter result, without destroying its tcf_exts structure, which triggers the above memory leak. To be more specific, there are only two source for the `old_r`, according to the tcindex_lookup(). `old_r` is retrieved from `p->perfect`, or `old_r` is retrieved from `p->h`. * If `old_r` is retrieved from `p->perfect`, kernel uses tcindex_alloc_perfect_hash() to newly allocate the filter results. Then `r` is assigned with `cp->perfect + handle`, which is newly allocated. So condition `old_r && old_r != r` is true in this situation, and kernel uses tcindex_filter_result_init() to clear the old filter result, without destroying its tcf_exts structure * If `old_r` is retrieved from `p->h`, then `p->perfect` is NULL according to the tcindex_lookup(). Considering that `cp->h` is directly copied from `p->h` and `p->perfect` is NULL, `r` is assigned with `tcindex_lookup(cp, handle)`, whose value should be the same as `old_r`, so condition `old_r && old_r != r` is false in this situation, kernel ignores using tcindex_filter_result_init() to clear the old filter result. So only when `old_r` is retrieved from `p->perfect` does kernel use tcindex_filter_result_init() to clear the old filter result, which triggers the above memory leak. Considering that there already exists a tc_filter_wq workqueue to destroy the old tcindex_d ---truncated---
CVE-2022-50397 1 Linux 1 Linux Kernel 2025-09-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/ieee802154: reject zero-sized raw_sendmsg() syzbot is hitting skb_assert_len() warning at raw_sendmsg() for ieee802154 socket. What commit dc633700f00f726e ("net/af_packet: check len when min_header_len equals to 0") does also applies to ieee802154 socket.
CVE-2023-53370 1 Linux 1 Linux Kernel 2025-09-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix memory leak in mes self test The fences associated with mes queue have to be freed up during amdgpu_ring_fini.
CVE-2023-53379 1 Linux 1 Linux Kernel 2025-09-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: phy: phy-tahvo: fix memory leak in tahvo_usb_probe() Smatch reports: drivers/usb/phy/phy-tahvo.c: tahvo_usb_probe() warn: missing unwind goto? After geting irq, if ret < 0, it will return without error handling to free memory. Just add error handling to fix this problem.
CVE-2023-53382 1 Linux 1 Linux Kernel 2025-09-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/smc: Reset connection when trying to use SMCRv2 fails. We found a crash when using SMCRv2 with 2 Mellanox ConnectX-4. It can be reproduced by: - smc_run nginx - smc_run wrk -t 32 -c 500 -d 30 http://<ip>:<port> BUG: kernel NULL pointer dereference, address: 0000000000000014 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 8000000108713067 P4D 8000000108713067 PUD 151127067 PMD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 4 PID: 2441 Comm: kworker/4:249 Kdump: loaded Tainted: G W E 6.4.0-rc1+ #42 Workqueue: smc_hs_wq smc_listen_work [smc] RIP: 0010:smc_clc_send_confirm_accept+0x284/0x580 [smc] RSP: 0018:ffffb8294b2d7c78 EFLAGS: 00010a06 RAX: ffff8f1873238880 RBX: ffffb8294b2d7dc8 RCX: 0000000000000000 RDX: 00000000000000b4 RSI: 0000000000000001 RDI: 0000000000b40c00 RBP: ffffb8294b2d7db8 R08: ffff8f1815c5860c R09: 0000000000000000 R10: 0000000000000400 R11: 0000000000000000 R12: ffff8f1846f56180 R13: ffff8f1815c5860c R14: 0000000000000001 R15: 0000000000000001 FS: 0000000000000000(0000) GS:ffff8f1aefd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000014 CR3: 00000001027a0001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? mlx5_ib_map_mr_sg+0xa1/0xd0 [mlx5_ib] ? smcr_buf_map_link+0x24b/0x290 [smc] ? __smc_buf_create+0x4ee/0x9b0 [smc] smc_clc_send_accept+0x4c/0xb0 [smc] smc_listen_work+0x346/0x650 [smc] ? __schedule+0x279/0x820 process_one_work+0x1e5/0x3f0 worker_thread+0x4d/0x2f0 ? __pfx_worker_thread+0x10/0x10 kthread+0xe5/0x120 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2c/0x50 </TASK> During the CLC handshake, server sequentially tries available SMCRv2 and SMCRv1 devices in smc_listen_work(). If an SMCRv2 device is found. SMCv2 based link group and link will be assigned to the connection. Then assumed that some buffer assignment errors happen later in the CLC handshake, such as RMB registration failure, server will give up SMCRv2 and try SMCRv1 device instead. But the resources assigned to the connection won't be reset. When server tries SMCRv1 device, the connection creation process will be executed again. Since conn->lnk has been assigned when trying SMCRv2, it will not be set to the correct SMCRv1 link in smcr_lgr_conn_assign_link(). So in such situation, conn->lgr points to correct SMCRv1 link group but conn->lnk points to the SMCRv2 link mistakenly. Then in smc_clc_send_confirm_accept(), conn->rmb_desc->mr[link->link_idx] will be accessed. Since the link->link_idx is not correct, the related MR may not have been initialized, so crash happens. | Try SMCRv2 device first | |-> conn->lgr: assign existed SMCRv2 link group; | |-> conn->link: assign existed SMCRv2 link (link_idx may be 1 in SMC_LGR_SYMMETRIC); | |-> sndbuf & RMB creation fails, quit; | | Try SMCRv1 device then | |-> conn->lgr: create SMCRv1 link group and assign; | |-> conn->link: keep SMCRv2 link mistakenly; | |-> sndbuf & RMB creation succeed, only RMB->mr[link_idx = 0] | initialized. | | Then smc_clc_send_confirm_accept() accesses | conn->rmb_desc->mr[conn->link->link_idx, which is 1], then crash. v This patch tries to fix this by cleaning conn->lnk before assigning link. In addition, it is better to reset the connection and clean the resources assigned if trying SMCRv2 failed in buffer creation or registration.
CVE-2023-53389 1 Linux 1 Linux Kernel 2025-09-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: dp: Only trigger DRM HPD events if bridge is attached The MediaTek DisplayPort interface bridge driver starts its interrupts as soon as its probed. However when the interrupts trigger the bridge might not have been attached to a DRM device. As drm_helper_hpd_irq_event() does not check whether the passed in drm_device is valid or not, a NULL pointer passed in results in a kernel NULL pointer dereference in it. Check whether the bridge is attached and only trigger an HPD event if it is.
CVE-2023-53393 1 Linux 1 Linux Kernel 2025-09-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Fix mlx5_ib_get_hw_stats when used for device Currently, when mlx5_ib_get_hw_stats() is used for device (port_num = 0), there is a special handling in order to use the correct counters, but, port_num is being passed down the stack without any change. Also, some functions assume that port_num >=1. As a result, the following oops can occur. BUG: unable to handle page fault for address: ffff89510294f1a8 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: 0002 [#1] SMP CPU: 8 PID: 1382 Comm: devlink Tainted: G W 6.1.0-rc4_for_upstream_base_2022_11_10_16_12 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:_raw_spin_lock+0xc/0x20 Call Trace: <TASK> mlx5_ib_get_native_port_mdev+0x73/0xe0 [mlx5_ib] do_get_hw_stats.constprop.0+0x109/0x160 [mlx5_ib] mlx5_ib_get_hw_stats+0xad/0x180 [mlx5_ib] ib_setup_device_attrs+0xf0/0x290 [ib_core] ib_register_device+0x3bb/0x510 [ib_core] ? atomic_notifier_chain_register+0x67/0x80 __mlx5_ib_add+0x2b/0x80 [mlx5_ib] mlx5r_probe+0xb8/0x150 [mlx5_ib] ? auxiliary_match_id+0x6a/0x90 auxiliary_bus_probe+0x3c/0x70 ? driver_sysfs_add+0x6b/0x90 really_probe+0xcd/0x380 __driver_probe_device+0x80/0x170 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 ? driver_allows_async_probing+0x60/0x60 ? driver_allows_async_probing+0x60/0x60 bus_for_each_drv+0x7b/0xc0 __device_attach+0xbc/0x200 bus_probe_device+0x87/0xa0 device_add+0x404/0x940 ? dev_set_name+0x53/0x70 __auxiliary_device_add+0x43/0x60 add_adev+0x99/0xe0 [mlx5_core] mlx5_attach_device+0xc8/0x120 [mlx5_core] mlx5_load_one_devl_locked+0xb2/0xe0 [mlx5_core] devlink_reload+0x133/0x250 devlink_nl_cmd_reload+0x480/0x570 ? devlink_nl_pre_doit+0x44/0x2b0 genl_family_rcv_msg_doit.isra.0+0xc2/0x110 genl_rcv_msg+0x180/0x2b0 ? devlink_nl_cmd_region_read_dumpit+0x540/0x540 ? devlink_reload+0x250/0x250 ? devlink_put+0x50/0x50 ? genl_family_rcv_msg_doit.isra.0+0x110/0x110 netlink_rcv_skb+0x54/0x100 genl_rcv+0x24/0x40 netlink_unicast+0x1f6/0x2c0 netlink_sendmsg+0x237/0x490 sock_sendmsg+0x33/0x40 __sys_sendto+0x103/0x160 ? handle_mm_fault+0x10e/0x290 ? do_user_addr_fault+0x1c0/0x5f0 __x64_sys_sendto+0x25/0x30 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Fix it by setting port_num to 1 in order to get device status and remove unused variable.
CVE-2023-53394 1 Linux 1 Linux Kernel 2025-09-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: xsk: Fix crash on regular rq reactivation When the regular rq is reactivated after the XSK socket is closed it could be reading stale cqes which eventually corrupts the rq. This leads to no more traffic being received on the regular rq and a crash on the next close or deactivation of the rq. Kal Cuttler Conely reported this issue as a crash on the release path when the xdpsock sample program is stopped (killed) and restarted in sequence while traffic is running. This patch flushes all cqes when during the rq flush. The cqe flushing is done in the reset state of the rq. mlx5e_rq_to_ready code is moved into the flush function to allow for this.
CVE-2023-53399 1 Linux 1 Linux Kernel 2025-09-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix NULL pointer dereference in smb2_get_info_filesystem() If share is , share->path is NULL and it cause NULL pointer dereference issue.
CVE-2023-53400 1 Linux 1 Linux Kernel 2025-09-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: Fix Oops by 9.1 surround channel names get_line_out_pfx() may trigger an Oops by overflowing the static array with more than 8 channels. This was reported for MacBookPro 12,1 with Cirrus codec. As a workaround, extend for the 9.1 channels and also fix the potential Oops by unifying the code paths accessing the same array with the proper size check.
CVE-2023-53376 1 Linux 1 Linux Kernel 2025-09-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: mpi3mr: Use number of bits to manage bitmap sizes To allocate bitmaps, the mpi3mr driver calculates sizes of bitmaps using byte as unit. However, bitmap helper functions assume that bitmaps are allocated using unsigned long as unit. This gap causes memory access beyond the bitmap sizes and results in "BUG: KASAN: slab-out-of-bounds". The BUG was observed at firmware download to eHBA-9600. Call trace indicated that the out-of-bounds access happened in find_first_zero_bit() called from mpi3mr_send_event_ack() for miroc->evtack_cmds_bitmap. To fix the BUG, do not use bytes to manage bitmap sizes. Instead, use number of bits, and call bitmap helper functions which take number of bits as arguments. For memory allocation, call bitmap_zalloc() instead of kzalloc() and krealloc(). For memory free, call bitmap_free() instead of kfree(). For zero clear, call bitmap_clear() instead of memset(). Remove three fields for bitmap byte sizes in struct scmd_priv which are no longer required. Replace the field dev_handle_bitmap_sz with dev_handle_bitmap_bits to keep number of bits of removepend_bitmap across resize.
CVE-2023-53395 1 Linux 1 Linux Kernel 2025-09-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ACPICA: Add AML_NO_OPERAND_RESOLVE flag to Timer ACPICA commit 90310989a0790032f5a0140741ff09b545af4bc5 According to the ACPI specification 19.6.134, no argument is required to be passed for ASL Timer instruction. For taking care of no argument, AML_NO_OPERAND_RESOLVE flag is added to ASL Timer instruction opcode. When ASL timer instruction interpreted by ACPI interpreter, getting error. After adding AML_NO_OPERAND_RESOLVE flag to ASL Timer instruction opcode, issue is not observed. ============================================================= UBSAN: array-index-out-of-bounds in acpica/dswexec.c:401:12 index -1 is out of range for type 'union acpi_operand_object *[9]' CPU: 37 PID: 1678 Comm: cat Not tainted 6.0.0-dev-th500-6.0.y-1+bcf8c46459e407-generic-64k HW name: NVIDIA BIOS v1.1.1-d7acbfc-dirty 12/19/2022 Call trace: dump_backtrace+0xe0/0x130 show_stack+0x20/0x60 dump_stack_lvl+0x68/0x84 dump_stack+0x18/0x34 ubsan_epilogue+0x10/0x50 __ubsan_handle_out_of_bounds+0x80/0x90 acpi_ds_exec_end_op+0x1bc/0x6d8 acpi_ps_parse_loop+0x57c/0x618 acpi_ps_parse_aml+0x1e0/0x4b4 acpi_ps_execute_method+0x24c/0x2b8 acpi_ns_evaluate+0x3a8/0x4bc acpi_evaluate_object+0x15c/0x37c acpi_evaluate_integer+0x54/0x15c show_power+0x8c/0x12c [acpi_power_meter]
CVE-2023-53401 1 Linux 1 Linux Kernel 2025-09-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm: kmem: fix a NULL pointer dereference in obj_stock_flush_required() KCSAN found an issue in obj_stock_flush_required(): stock->cached_objcg can be reset between the check and dereference: ================================================================== BUG: KCSAN: data-race in drain_all_stock / drain_obj_stock write to 0xffff888237c2a2f8 of 8 bytes by task 19625 on cpu 0: drain_obj_stock+0x408/0x4e0 mm/memcontrol.c:3306 refill_obj_stock+0x9c/0x1e0 mm/memcontrol.c:3340 obj_cgroup_uncharge+0xe/0x10 mm/memcontrol.c:3408 memcg_slab_free_hook mm/slab.h:587 [inline] __cache_free mm/slab.c:3373 [inline] __do_kmem_cache_free mm/slab.c:3577 [inline] kmem_cache_free+0x105/0x280 mm/slab.c:3602 __d_free fs/dcache.c:298 [inline] dentry_free fs/dcache.c:375 [inline] __dentry_kill+0x422/0x4a0 fs/dcache.c:621 dentry_kill+0x8d/0x1e0 dput+0x118/0x1f0 fs/dcache.c:913 __fput+0x3bf/0x570 fs/file_table.c:329 ____fput+0x15/0x20 fs/file_table.c:349 task_work_run+0x123/0x160 kernel/task_work.c:179 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline] exit_to_user_mode_loop+0xcf/0xe0 kernel/entry/common.c:171 exit_to_user_mode_prepare+0x6a/0xa0 kernel/entry/common.c:203 __syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline] syscall_exit_to_user_mode+0x26/0x140 kernel/entry/common.c:296 do_syscall_64+0x4d/0xc0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x63/0xcd read to 0xffff888237c2a2f8 of 8 bytes by task 19632 on cpu 1: obj_stock_flush_required mm/memcontrol.c:3319 [inline] drain_all_stock+0x174/0x2a0 mm/memcontrol.c:2361 try_charge_memcg+0x6d0/0xd10 mm/memcontrol.c:2703 try_charge mm/memcontrol.c:2837 [inline] mem_cgroup_charge_skmem+0x51/0x140 mm/memcontrol.c:7290 sock_reserve_memory+0xb1/0x390 net/core/sock.c:1025 sk_setsockopt+0x800/0x1e70 net/core/sock.c:1525 udp_lib_setsockopt+0x99/0x6c0 net/ipv4/udp.c:2692 udp_setsockopt+0x73/0xa0 net/ipv4/udp.c:2817 sock_common_setsockopt+0x61/0x70 net/core/sock.c:3668 __sys_setsockopt+0x1c3/0x230 net/socket.c:2271 __do_sys_setsockopt net/socket.c:2282 [inline] __se_sys_setsockopt net/socket.c:2279 [inline] __x64_sys_setsockopt+0x66/0x80 net/socket.c:2279 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0xffff8881382d52c0 -> 0xffff888138893740 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 19632 Comm: syz-executor.0 Not tainted 6.3.0-rc2-syzkaller-00387-g534293368afa #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023 Fix it by using READ_ONCE()/WRITE_ONCE() for all accesses to stock->cached_objcg.
CVE-2024-30250 1 Kindspells 1 Astro-shield 2025-09-19 7.5 High
Astro-Shield is an integration to enhance website security with SubResource Integrity hashes, Content-Security-Policy headers, and other techniques. Versions from 1.2.0 to 1.3.1 of Astro-Shield allow bypass to the allow-lists for cross-origin resources by introducing valid `integrity` attributes to the injected code. This implies that the injected SRI hash would be added to the generated CSP header, which would lead the browser to believe that the injected resource is legit. This vulnerability is patched in version 1.3.2.
CVE-2024-29896 1 Kindspells 1 Astro-shield 2025-09-19 7.5 High
Astro-Shield is a library to compute the subresource integrity hashes for your JS scripts and CSS stylesheets. When automated CSP headers generation for SSR content is enabled and the web application serves content that can be partially controlled by external users, then it is possible that the CSP headers generation feature might be "allow-listing" malicious injected resources like inlined JS, or references to external malicious scripts. The fix is available in version 1.3.0.
CVE-2025-58767 2 Ruby, Ruby-lang 2 Rexml, Rexml 2025-09-19 7.5 High
REXML is an XML toolkit for Ruby. The REXML gems from 3.3.3 to 3.4.1 has a DoS vulnerability when parsing XML containing multiple XML declarations. If you need to parse untrusted XMLs, you may be impacted to these vulnerabilities. The REXML gem 3.4.2 or later include the patches to fix these vulnerabilities.
CVE-2024-35804 1 Linux 1 Linux Kernel 2025-09-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Mark target gfn of emulated atomic instruction as dirty When emulating an atomic access on behalf of the guest, mark the target gfn dirty if the CMPXCHG by KVM is attempted and doesn't fault. This fixes a bug where KVM effectively corrupts guest memory during live migration by writing to guest memory without informing userspace that the page is dirty. Marking the page dirty got unintentionally dropped when KVM's emulated CMPXCHG was converted to do a user access. Before that, KVM explicitly mapped the guest page into kernel memory, and marked the page dirty during the unmap phase. Mark the page dirty even if the CMPXCHG fails, as the old data is written back on failure, i.e. the page is still written. The value written is guaranteed to be the same because the operation is atomic, but KVM's ABI is that all writes are dirty logged regardless of the value written. And more importantly, that's what KVM did before the buggy commit. Huge kudos to the folks on the Cc list (and many others), who did all the actual work of triaging and debugging. base-commit: 6769ea8da8a93ed4630f1ce64df6aafcaabfce64
CVE-2025-29888 1 Qnap 1 File Station 2025-09-19 6.5 Medium
A NULL pointer dereference vulnerability has been reported to affect File Station 5. If a remote attacker gains a user account, they can then exploit the vulnerability to launch a denial-of-service (DoS) attack. We have already fixed the vulnerability in the following version: File Station 5 5.5.6.4907 and later
CVE-2024-43398 3 Netapp, Redhat, Ruby-lang 7 Bootstrap Os, Hci Compute Node, Enterprise Linux and 4 more 2025-09-19 5.9 Medium
REXML is an XML toolkit for Ruby. The REXML gem before 3.3.6 has a DoS vulnerability when it parses an XML that has many deep elements that have same local name attributes. If you need to parse untrusted XMLs with tree parser API like REXML::Document.new, you may be impacted to this vulnerability. If you use other parser APIs such as stream parser API and SAX2 parser API, this vulnerability is not affected. The REXML gem 3.3.6 or later include the patch to fix the vulnerability.
CVE-2024-39908 3 Netapp, Redhat, Ruby-lang 4 Bootstrap Os, Hci Compute Node, Enterprise Linux and 1 more 2025-09-19 4.3 Medium
REXML is an XML toolkit for Ruby. The REXML gem before 3.3.1 has some DoS vulnerabilities when it parses an XML that has many specific characters such as `<`, `0` and `%>`. If you need to parse untrusted XMLs, you many be impacted to these vulnerabilities. The REXML gem 3.3.2 or later include the patches to fix these vulnerabilities. Users are advised to upgrade. Users unable to upgrade should avoid parsing untrusted XML strings.