| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
padata: Fix pd UAF once and for all
There is a race condition/UAF in padata_reorder that goes back
to the initial commit. A reference count is taken at the start
of the process in padata_do_parallel, and released at the end in
padata_serial_worker.
This reference count is (and only is) required for padata_replace
to function correctly. If padata_replace is never called then
there is no issue.
In the function padata_reorder which serves as the core of padata,
as soon as padata is added to queue->serial.list, and the associated
spin lock released, that padata may be processed and the reference
count on pd would go away.
Fix this by getting the next padata before the squeue->serial lock
is released.
In order to make this possible, simplify padata_reorder by only
calling it once the next padata arrives. |
| In the Linux kernel, the following vulnerability has been resolved:
zloop: fix KASAN use-after-free of tag set
When a zoned loop device, or zloop device, is removed, KASAN enabled
kernel reports "BUG KASAN use-after-free" in blk_mq_free_tag_set(). The
BUG happens because zloop_ctl_remove() calls put_disk(), which invokes
zloop_free_disk(). The zloop_free_disk() frees the memory allocated for
the zlo pointer. However, after the memory is freed, zloop_ctl_remove()
calls blk_mq_free_tag_set(&zlo->tag_set), which accesses the freed zlo.
Hence the KASAN use-after-free.
zloop_ctl_remove()
put_disk(zlo->disk)
put_device()
kobject_put()
...
zloop_free_disk()
kvfree(zlo)
blk_mq_free_tag_set(&zlo->tag_set)
To avoid the BUG, move the call to blk_mq_free_tag_set(&zlo->tag_set)
from zloop_ctl_remove() into zloop_free_disk(). This ensures that
the tag_set is freed before the call to kvfree(zlo). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: Fix error code in iwl_op_mode_dvm_start()
Preserve the error code if iwl_setup_deferred_work() fails. The current
code returns ERR_PTR(0) (which is NULL) on this path. I believe the
missing error code potentially leads to a use after free involving
debugfs. |
| Use-after-free in the Audio/Video component. This vulnerability affects Firefox < 145, Firefox ESR < 140.5, Firefox ESR < 115.30, Thunderbird < 145, and Thunderbird < 140.5. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix UAF on smcsk after smc_listen_out()
BPF CI testing report a UAF issue:
[ 16.446633] BUG: kernel NULL pointer dereference, address: 000000000000003 0
[ 16.447134] #PF: supervisor read access in kernel mod e
[ 16.447516] #PF: error_code(0x0000) - not-present pag e
[ 16.447878] PGD 0 P4D 0
[ 16.448063] Oops: Oops: 0000 [#1] PREEMPT SMP NOPT I
[ 16.448409] CPU: 0 UID: 0 PID: 9 Comm: kworker/0:1 Tainted: G OE 6.13.0-rc3-g89e8a75fda73-dirty #4 2
[ 16.449124] Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODUL E
[ 16.449502] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/201 4
[ 16.450201] Workqueue: smc_hs_wq smc_listen_wor k
[ 16.450531] RIP: 0010:smc_listen_work+0xc02/0x159 0
[ 16.452158] RSP: 0018:ffffb5ab40053d98 EFLAGS: 0001024 6
[ 16.452526] RAX: 0000000000000001 RBX: 0000000000000002 RCX: 000000000000030 0
[ 16.452994] RDX: 0000000000000280 RSI: 00003513840053f0 RDI: 000000000000000 0
[ 16.453492] RBP: ffffa097808e3800 R08: ffffa09782dba1e0 R09: 000000000000000 5
[ 16.453987] R10: 0000000000000000 R11: 0000000000000000 R12: ffffa0978274640 0
[ 16.454497] R13: 0000000000000000 R14: 0000000000000000 R15: ffffa09782d4092 0
[ 16.454996] FS: 0000000000000000(0000) GS:ffffa097bbc00000(0000) knlGS:000000000000000 0
[ 16.455557] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003 3
[ 16.455961] CR2: 0000000000000030 CR3: 0000000102788004 CR4: 0000000000770ef 0
[ 16.456459] PKRU: 5555555 4
[ 16.456654] Call Trace :
[ 16.456832] <TASK >
[ 16.456989] ? __die+0x23/0x7 0
[ 16.457215] ? page_fault_oops+0x180/0x4c 0
[ 16.457508] ? __lock_acquire+0x3e6/0x249 0
[ 16.457801] ? exc_page_fault+0x68/0x20 0
[ 16.458080] ? asm_exc_page_fault+0x26/0x3 0
[ 16.458389] ? smc_listen_work+0xc02/0x159 0
[ 16.458689] ? smc_listen_work+0xc02/0x159 0
[ 16.458987] ? lock_is_held_type+0x8f/0x10 0
[ 16.459284] process_one_work+0x1ea/0x6d 0
[ 16.459570] worker_thread+0x1c3/0x38 0
[ 16.459839] ? __pfx_worker_thread+0x10/0x1 0
[ 16.460144] kthread+0xe0/0x11 0
[ 16.460372] ? __pfx_kthread+0x10/0x1 0
[ 16.460640] ret_from_fork+0x31/0x5 0
[ 16.460896] ? __pfx_kthread+0x10/0x1 0
[ 16.461166] ret_from_fork_asm+0x1a/0x3 0
[ 16.461453] </TASK >
[ 16.461616] Modules linked in: bpf_testmod(OE) [last unloaded: bpf_testmod(OE) ]
[ 16.462134] CR2: 000000000000003 0
[ 16.462380] ---[ end trace 0000000000000000 ]---
[ 16.462710] RIP: 0010:smc_listen_work+0xc02/0x1590
The direct cause of this issue is that after smc_listen_out_connected(),
newclcsock->sk may be NULL since it will releases the smcsk. Therefore,
if the application closes the socket immediately after accept,
newclcsock->sk can be NULL. A possible execution order could be as
follows:
smc_listen_work | userspace
-----------------------------------------------------------------
lock_sock(sk) |
smc_listen_out_connected() |
| \- smc_listen_out |
| | \- release_sock |
| |- sk->sk_data_ready() |
| fd = accept();
| close(fd);
| \- socket->sk = NULL;
/* newclcsock->sk is NULL now */
SMC_STAT_SERV_SUCC_INC(sock_net(newclcsock->sk))
Since smc_listen_out_connected() will not fail, simply swapping the order
of the code can easily fix this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
habanalabs: fix UAF in export_dmabuf()
As soon as we'd inserted a file reference into descriptor table, another
thread could close it. That's fine for the case when all we are doing is
returning that descriptor to userland (it's a race, but it's a userland
race and there's nothing the kernel can do about it). However, if we
follow fd_install() with any kind of access to objects that would be
destroyed on close (be it the struct file itself or anything destroyed
by its ->release()), we have a UAF.
dma_buf_fd() is a combination of reserving a descriptor and fd_install().
habanalabs export_dmabuf() calls it and then proceeds to access the
objects destroyed on close. In particular, it grabs an extra reference to
another struct file that will be dropped as part of ->release() for ours;
that "will be" is actually "might have already been".
Fix that by reserving descriptor before anything else and do fd_install()
only when everything had been set up. As a side benefit, we no longer
have the failure exit with file already created, but reference to
underlying file (as well as ->dmabuf_export_cnt, etc.) not grabbed yet;
unlike dma_buf_fd(), fd_install() can't fail. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/futex: ensure io_futex_wait() cleans up properly on failure
The io_futex_data is allocated upfront and assigned to the io_kiocb
async_data field, but the request isn't marked with REQ_F_ASYNC_DATA
at that point. Those two should always go together, as the flag tells
io_uring whether the field is valid or not.
Additionally, on failure cleanup, the futex handler frees the data but
does not clear ->async_data. Clear the data and the flag in the error
path as well.
Thanks to Trend Micro Zero Day Initiative and particularly ReDress for
reporting this. |
| In the Linux kernel, the following vulnerability has been resolved:
media: ivsc: Fix crash at shutdown due to missing mei_cldev_disable() calls
Both the ACE and CSI driver are missing a mei_cldev_disable() call in
their remove() function.
This causes the mei_cl client to stay part of the mei_device->file_list
list even though its memory is freed by mei_cl_bus_dev_release() calling
kfree(cldev->cl).
This leads to a use-after-free when mei_vsc_remove() runs mei_stop()
which first removes all mei bus devices calling mei_ace_remove() and
mei_csi_remove() followed by mei_cl_bus_dev_release() and then calls
mei_cl_all_disconnect() which walks over mei_device->file_list dereferecing
the just freed cldev->cl.
And mei_vsc_remove() it self is run at shutdown because of the
platform_device_unregister(tp->pdev) in vsc_tp_shutdown()
When building a kernel with KASAN this leads to the following KASAN report:
[ 106.634504] ==================================================================
[ 106.634623] BUG: KASAN: slab-use-after-free in mei_cl_set_disconnected (drivers/misc/mei/client.c:783) mei
[ 106.634683] Read of size 4 at addr ffff88819cb62018 by task systemd-shutdow/1
[ 106.634729]
[ 106.634767] Tainted: [E]=UNSIGNED_MODULE
[ 106.634770] Hardware name: Dell Inc. XPS 16 9640/09CK4V, BIOS 1.12.0 02/10/2025
[ 106.634773] Call Trace:
[ 106.634777] <TASK>
...
[ 106.634871] kasan_report (mm/kasan/report.c:221 mm/kasan/report.c:636)
[ 106.634901] mei_cl_set_disconnected (drivers/misc/mei/client.c:783) mei
[ 106.634921] mei_cl_all_disconnect (drivers/misc/mei/client.c:2165 (discriminator 4)) mei
[ 106.634941] mei_reset (drivers/misc/mei/init.c:163) mei
...
[ 106.635042] mei_stop (drivers/misc/mei/init.c:348) mei
[ 106.635062] mei_vsc_remove (drivers/misc/mei/mei_dev.h:784 drivers/misc/mei/platform-vsc.c:393) mei_vsc
[ 106.635066] platform_remove (drivers/base/platform.c:1424)
Add the missing mei_cldev_disable() calls so that the mei_cl gets removed
from mei_device->file_list before it is freed to fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/migrate: prevent potential UAF
If we hit the error path, the previous fence (if there is one) has
already been put() prior to this, so doing a fence_wait could lead to
UAF. Tweak the flow to do to the put() until after we do the wait.
(cherry picked from commit 9b7ca35ed28fe5fad86e9d9c24ebd1271e4c9c3e) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/hisilicon/hibmc: fix irq_request()'s irq name variable is local
The local variable is passed in request_irq (), and there will be use
after free problem, which will make request_irq failed. Using the global
irq name instead of it to fix. |
| A use-after-free vulnerability can occur when refresh driver timers are refreshed in some circumstances during shutdown when the timer is deleted while still in use. This results in a potentially exploitable crash. This vulnerability affects Firefox < 62, Firefox ESR < 60.2, and Thunderbird < 60.2.1. |
| A use-after-free error can occur when manipulating ranges in selections with one node inside a native anonymous tree and one node outside of it. This results in a potentially exploitable crash. This vulnerability affects Firefox < 52, Firefox ESR < 45.8, Thunderbird < 52, and Thunderbird < 45.8. |
| A use-after-free vulnerability can occur when the widget listener is holding strong references to browser objects that have previously been freed, resulting in a potentially exploitable crash when these references are used. This vulnerability affects Thunderbird < 52.6, Firefox ESR < 52.6, and Firefox < 58. |
| A use-after-free vulnerability can occur during XSL transformations when the source document for the transformation is manipulated by script content during the transformation. This results in a potentially exploitable crash. This vulnerability affects Thunderbird < 52.6, Firefox ESR < 52.6, and Firefox < 58. |
| A use-after-free vulnerability can occur when an IndexedDB index is deleted while still in use by JavaScript code that is providing payload values to be stored. This results in a potentially exploitable crash. This vulnerability affects Firefox < 62, Firefox ESR < 60.2, and Thunderbird < 60.2.1. |
| A use-after-free vulnerability can occur when manipulating arrays of Accessible Rich Internet Applications (ARIA) elements within containers through the DOM. This results in a potentially exploitable crash. This vulnerability affects Firefox < 56, Firefox ESR < 52.4, and Thunderbird < 52.4. |
| A use-after-free vulnerability when holding a selection during scroll events. This results in a potentially exploitable crash. This vulnerability affects Thunderbird < 52.1, Firefox ESR < 45.9, Firefox ESR < 52.1, and Firefox < 53. |
| A use-after-free vulnerability in the Media Decoder when working with media files when some events are fired after the media elements are freed from memory. This vulnerability affects Thunderbird < 45.7, Firefox ESR < 45.7, and Firefox < 51. |
| Use-after-free vulnerability in the RefreshDriverTimer::TickDriver function in the SMIL Animation Controller in Mozilla Firefox before 30.0, Firefox ESR 24.x before 24.6, and Thunderbird before 24.6 allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via crafted web content. |
| A use-after-free vulnerability occurs when redirecting focus handling which results in a potentially exploitable crash. This vulnerability affects Thunderbird < 52.1, Firefox ESR < 45.9, Firefox ESR < 52.1, and Firefox < 53. |