| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
afs: Fix dynamic root getattr
The recent patch to make afs_getattr consult the server didn't account
for the pseudo-inodes employed by the dynamic root-type afs superblock
not having a volume or a server to access, and thus an oops occurs if
such a directory is stat'd.
Fix this by checking to see if the vnode->volume pointer actually points
anywhere before following it in afs_getattr().
This can be tested by stat'ing a directory in /afs. It may be
sufficient just to do "ls /afs" and the oops looks something like:
BUG: kernel NULL pointer dereference, address: 0000000000000020
...
RIP: 0010:afs_getattr+0x8b/0x14b
...
Call Trace:
<TASK>
vfs_statx+0x79/0xf5
vfs_fstatat+0x49/0x62 |
| A NULL pointer dereference in the sub_41773C function of TOTOLINK N600R v4.3.0cu.7866_B20220506 allows attackers to cause a Denial of Service (DoS) via a crafted HTTP request. |
| A NULL pointer dereference in the SetWLanRadioSettings function of D-Link DIR-823G A1 v1.0.2B05 allows attackers to cause a Denial of Service (DoS) via a crafted HTTP request. |
| A NULL pointer dereference in the main function of TOTOLINK N600R v4.3.0cu.7866_B20220506 allows attackers to cause a Denial of Service (DoS) via a crafted HTTP request. |
| Suricata is a network IDS, IPS and NSM engine developed by the OISF (Open Information Security Foundation) and the Suricata community. Version 8.0.0's usage of the tls.subjectaltname keyword can lead to a segmentation fault when the decoded subjectaltname contains a NULL byte. This issue is fixed in version 8.0.1. To workaround this issue, disable rules using the tls.subjectaltname keyword. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: delete intermediate secpath entry in packet offload mode
Packets handled by hardware have added secpath as a way to inform XFRM
core code that this path was already handled. That secpath is not needed
at all after policy is checked and it is removed later in the stack.
However, in the case of IP forwarding is enabled (/proc/sys/net/ipv4/ip_forward),
that secpath is not removed and packets which already were handled are reentered
to the driver TX path with xfrm_offload set.
The following kernel panic is observed in mlx5 in such case:
mlx5_core 0000:04:00.0 enp4s0f0np0: Link up
mlx5_core 0000:04:00.1 enp4s0f1np1: Link up
Initializing XFRM netlink socket
IPsec XFRM device driver
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
PGD 0 P4D 0
Oops: Oops: 0010 [#1] PREEMPT SMP
CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.13.0-rc1-alex #3
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:0x0
Code: Unable to access opcode bytes at 0xffffffffffffffd6.
RSP: 0018:ffffb87380003800 EFLAGS: 00010206
RAX: ffff8df004e02600 RBX: ffffb873800038d8 RCX: 00000000ffff98cf
RDX: ffff8df00733e108 RSI: ffff8df00521fb80 RDI: ffff8df001661f00
RBP: ffffb87380003850 R08: ffff8df013980000 R09: 0000000000000010
R10: 0000000000000002 R11: 0000000000000002 R12: ffff8df001661f00
R13: ffff8df00521fb80 R14: ffff8df00733e108 R15: ffff8df011faf04e
FS: 0000000000000000(0000) GS:ffff8df46b800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffffffffd6 CR3: 0000000106384000 CR4: 0000000000350ef0
Call Trace:
<IRQ>
? show_regs+0x63/0x70
? __die_body+0x20/0x60
? __die+0x2b/0x40
? page_fault_oops+0x15c/0x550
? do_user_addr_fault+0x3ed/0x870
? exc_page_fault+0x7f/0x190
? asm_exc_page_fault+0x27/0x30
mlx5e_ipsec_handle_tx_skb+0xe7/0x2f0 [mlx5_core]
mlx5e_xmit+0x58e/0x1980 [mlx5_core]
? __fib_lookup+0x6a/0xb0
dev_hard_start_xmit+0x82/0x1d0
sch_direct_xmit+0xfe/0x390
__dev_queue_xmit+0x6d8/0xee0
? __fib_lookup+0x6a/0xb0
? internal_add_timer+0x48/0x70
? mod_timer+0xe2/0x2b0
neigh_resolve_output+0x115/0x1b0
__neigh_update+0x26a/0xc50
neigh_update+0x14/0x20
arp_process+0x2cb/0x8e0
? __napi_build_skb+0x5e/0x70
arp_rcv+0x11e/0x1c0
? dev_gro_receive+0x574/0x820
__netif_receive_skb_list_core+0x1cf/0x1f0
netif_receive_skb_list_internal+0x183/0x2a0
napi_complete_done+0x76/0x1c0
mlx5e_napi_poll+0x234/0x7a0 [mlx5_core]
__napi_poll+0x2d/0x1f0
net_rx_action+0x1a6/0x370
? atomic_notifier_call_chain+0x3b/0x50
? irq_int_handler+0x15/0x20 [mlx5_core]
handle_softirqs+0xb9/0x2f0
? handle_irq_event+0x44/0x60
irq_exit_rcu+0xdb/0x100
common_interrupt+0x98/0xc0
</IRQ>
<TASK>
asm_common_interrupt+0x27/0x40
RIP: 0010:pv_native_safe_halt+0xb/0x10
Code: 09 c3 66 66 2e 0f 1f 84 00 00 00 00 00 66 90 0f 22
0f 1f 84 00 00 00 00 00 90 eb 07 0f 00 2d 7f e9 36 00 fb
40 00 83 ff 07 77 21 89 ff ff 24 fd 88 3d a1 bd 0f 21 f8
RSP: 0018:ffffffffbe603de8 EFLAGS: 00000202
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000f92f46680
RDX: 0000000000000037 RSI: 00000000ffffffff RDI: 00000000000518d4
RBP: ffffffffbe603df0 R08: 000000cd42e4dffb R09: ffffffffbe603d70
R10: 0000004d80d62680 R11: 0000000000000001 R12: ffffffffbe60bf40
R13: 0000000000000000 R14: 0000000000000000 R15: ffffffffbe60aff8
? default_idle+0x9/0x20
arch_cpu_idle+0x9/0x10
default_idle_call+0x29/0xf0
do_idle+0x1f2/0x240
cpu_startup_entry+0x2c/0x30
rest_init+0xe7/0x100
start_kernel+0x76b/0xb90
x86_64_start_reservations+0x18/0x30
x86_64_start_kernel+0xc0/0x110
? setup_ghcb+0xe/0x130
common_startup_64+0x13e/0x141
</TASK>
Modules linked in: esp4_offload esp4 xfrm_interface
xfrm6_tunnel tunnel4 tunnel6 xfrm_user xfrm_algo binf
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: qcom: scm: smc: Handle missing SCM device
Commit ca61d6836e6f ("firmware: qcom: scm: fix a NULL-pointer
dereference") makes it explicit that qcom_scm_get_tzmem_pool() can
return NULL, therefore its users should handle this. |
| In the Linux kernel, the following vulnerability has been resolved:
sfc: fix kernel panic when creating VF
When creating VFs a kernel panic can happen when calling to
efx_ef10_try_update_nic_stats_vf.
When releasing a DMA coherent buffer, sometimes, I don't know in what
specific circumstances, it has to unmap memory with vunmap. It is
disallowed to do that in IRQ context or with BH disabled. Otherwise, we
hit this line in vunmap, causing the crash:
BUG_ON(in_interrupt());
This patch reenables BH to release the buffer.
Log messages when the bug is hit:
kernel BUG at mm/vmalloc.c:2727!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 6 PID: 1462 Comm: NetworkManager Kdump: loaded Tainted: G I --------- --- 5.14.0-119.el9.x86_64 #1
Hardware name: Dell Inc. PowerEdge R740/06WXJT, BIOS 2.8.2 08/27/2020
RIP: 0010:vunmap+0x2e/0x30
...skip...
Call Trace:
__iommu_dma_free+0x96/0x100
efx_nic_free_buffer+0x2b/0x40 [sfc]
efx_ef10_try_update_nic_stats_vf+0x14a/0x1c0 [sfc]
efx_ef10_update_stats_vf+0x18/0x40 [sfc]
efx_start_all+0x15e/0x1d0 [sfc]
efx_net_open+0x5a/0xe0 [sfc]
__dev_open+0xe7/0x1a0
__dev_change_flags+0x1d7/0x240
dev_change_flags+0x21/0x60
...skip... |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: rt7*-sdw: harden jack_detect_handler
Realtek headset codec drivers typically check if the card is
instantiated before proceeding with the jack detection.
The rt700, rt711 and rt711-sdca are however missing a check on the
card pointer, which can lead to NULL dereferences encountered in
driver bind/unbind tests. |
| In the Linux kernel, the following vulnerability has been resolved:
igc: Reinstate IGC_REMOVED logic and implement it properly
The initially merged version of the igc driver code (via commit
146740f9abc4, "igc: Add support for PF") contained the following
IGC_REMOVED checks in the igc_rd32/wr32() MMIO accessors:
u32 igc_rd32(struct igc_hw *hw, u32 reg)
{
u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
u32 value = 0;
if (IGC_REMOVED(hw_addr))
return ~value;
value = readl(&hw_addr[reg]);
/* reads should not return all F's */
if (!(~value) && (!reg || !(~readl(hw_addr))))
hw->hw_addr = NULL;
return value;
}
And:
#define wr32(reg, val) \
do { \
u8 __iomem *hw_addr = READ_ONCE((hw)->hw_addr); \
if (!IGC_REMOVED(hw_addr)) \
writel((val), &hw_addr[(reg)]); \
} while (0)
E.g. igb has similar checks in its MMIO accessors, and has a similar
macro E1000_REMOVED, which is implemented as follows:
#define E1000_REMOVED(h) unlikely(!(h))
These checks serve to detect and take note of an 0xffffffff MMIO read
return from the device, which can be caused by a PCIe link flap or some
other kind of PCI bus error, and to avoid performing MMIO reads and
writes from that point onwards.
However, the IGC_REMOVED macro was not originally implemented:
#ifndef IGC_REMOVED
#define IGC_REMOVED(a) (0)
#endif /* IGC_REMOVED */
This led to the IGC_REMOVED logic to be removed entirely in a
subsequent commit (commit 3c215fb18e70, "igc: remove IGC_REMOVED
function"), with the rationale that such checks matter only for
virtualization and that igc does not support virtualization -- but a
PCIe device can become detached even without virtualization being in
use, and without proper checks, a PCIe bus error affecting an igc
adapter will lead to various NULL pointer dereferences, as the first
access after the error will set hw->hw_addr to NULL, and subsequent
accesses will blindly dereference this now-NULL pointer.
This patch reinstates the IGC_REMOVED checks in igc_rd32/wr32(), and
implements IGC_REMOVED the way it is done for igb, by checking for the
unlikely() case of hw_addr being NULL. This change prevents the oopses
seen when a PCIe link flap occurs on an igc adapter. |
| When HTTP/2 Ingress is configured, undisclosed traffic can cause the Traffic Management Microkernel (TMM) to terminate. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. |
| brplot v420.69.1 contains a Null Pointer Dereference (NPD) vulnerability in the br_dagens_handle_once function of its data processing module, leading to unpredictable program behavior, causing segmentation faults, and program crashes. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: Fix NULL pointer dereference when printing dev_name
When larbdev is NULL (in the case I hit, the node is incorrectly set
iommus = <&iommu NUM>), it will cause device_link_add() fail and
kernel crashes when we try to print dev_name(larbdev).
Let's fail the probe if a larbdev is NULL to avoid invalid inputs from
dts.
It should work for normal correct setting and avoid the crash caused
by my incorrect setting.
Error log:
[ 18.189042][ T301] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000050
...
[ 18.344519][ T301] pstate: a0400005 (NzCv daif +PAN -UAO)
[ 18.345213][ T301] pc : mtk_iommu_probe_device+0xf8/0x118 [mtk_iommu]
[ 18.346050][ T301] lr : mtk_iommu_probe_device+0xd0/0x118 [mtk_iommu]
[ 18.346884][ T301] sp : ffffffc00a5635e0
[ 18.347392][ T301] x29: ffffffc00a5635e0 x28: ffffffd44a46c1d8
[ 18.348156][ T301] x27: ffffff80c39a8000 x26: ffffffd44a80cc38
[ 18.348917][ T301] x25: 0000000000000000 x24: ffffffd44a80cc38
[ 18.349677][ T301] x23: ffffffd44e4da4c6 x22: ffffffd44a80cc38
[ 18.350438][ T301] x21: ffffff80cecd1880 x20: 0000000000000000
[ 18.351198][ T301] x19: ffffff80c439f010 x18: ffffffc00a50d0c0
[ 18.351959][ T301] x17: ffffffffffffffff x16: 0000000000000004
[ 18.352719][ T301] x15: 0000000000000004 x14: ffffffd44eb5d420
[ 18.353480][ T301] x13: 0000000000000ad2 x12: 0000000000000003
[ 18.354241][ T301] x11: 00000000fffffad2 x10: c0000000fffffad2
[ 18.355003][ T301] x9 : a0d288d8d7142d00 x8 : a0d288d8d7142d00
[ 18.355763][ T301] x7 : ffffffd44c2bc640 x6 : 0000000000000000
[ 18.356524][ T301] x5 : 0000000000000080 x4 : 0000000000000001
[ 18.357284][ T301] x3 : 0000000000000000 x2 : 0000000000000005
[ 18.358045][ T301] x1 : 0000000000000000 x0 : 0000000000000000
[ 18.360208][ T301] Hardware name: MT6873 (DT)
[ 18.360771][ T301] Call trace:
[ 18.361168][ T301] dump_backtrace+0xf8/0x1f0
[ 18.361737][ T301] dump_stack_lvl+0xa8/0x11c
[ 18.362305][ T301] dump_stack+0x1c/0x2c
[ 18.362816][ T301] mrdump_common_die+0x184/0x40c [mrdump]
[ 18.363575][ T301] ipanic_die+0x24/0x38 [mrdump]
[ 18.364230][ T301] atomic_notifier_call_chain+0x128/0x2b8
[ 18.364937][ T301] die+0x16c/0x568
[ 18.365394][ T301] __do_kernel_fault+0x1e8/0x214
[ 18.365402][ T301] do_page_fault+0xb8/0x678
[ 18.366934][ T301] do_translation_fault+0x48/0x64
[ 18.368645][ T301] do_mem_abort+0x68/0x148
[ 18.368652][ T301] el1_abort+0x40/0x64
[ 18.368660][ T301] el1h_64_sync_handler+0x54/0x88
[ 18.368668][ T301] el1h_64_sync+0x68/0x6c
[ 18.368673][ T301] mtk_iommu_probe_device+0xf8/0x118 [mtk_iommu]
... |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix dereference of stale list iterator after loop body
The list iterator variable will be a bogus pointer if no break was hit.
Dereferencing it (cur->page in this case) could load an out-of-bounds/undefined
value making it unsafe to use that in the comparision to determine if the
specific element was found.
Since 'cur->page' *can* be out-ouf-bounds it cannot be guaranteed that
by chance (or intention of an attacker) it matches the value of 'page'
even though the correct element was not found.
This is fixed by using a separate list iterator variable for the loop
and only setting the original variable if a suitable element was found.
Then determing if the element was found is simply checking if the
variable is set. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on inline_dots inode
As Wenqing reported in bugzilla:
https://bugzilla.kernel.org/show_bug.cgi?id=215765
It will cause a kernel panic with steps:
- mkdir mnt
- mount tmp40.img mnt
- ls mnt
folio_mark_dirty+0x33/0x50
f2fs_add_regular_entry+0x541/0xad0 [f2fs]
f2fs_add_dentry+0x6c/0xb0 [f2fs]
f2fs_do_add_link+0x182/0x230 [f2fs]
__recover_dot_dentries+0x2d6/0x470 [f2fs]
f2fs_lookup+0x5af/0x6a0 [f2fs]
__lookup_slow+0xac/0x200
lookup_slow+0x45/0x70
walk_component+0x16c/0x250
path_lookupat+0x8b/0x1f0
filename_lookup+0xef/0x250
user_path_at_empty+0x46/0x70
vfs_statx+0x98/0x190
__do_sys_newlstat+0x41/0x90
__x64_sys_newlstat+0x1a/0x30
do_syscall_64+0x37/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xae
The root cause is for special file: e.g. character, block, fifo or
socket file, f2fs doesn't assign address space operations pointer array
for mapping->a_ops field, so, in a fuzzed image, if inline_dots flag was
tagged in special file, during lookup(), when f2fs runs into
__recover_dot_dentries(), it will cause NULL pointer access once
f2fs_add_regular_entry() calls a_ops->set_dirty_page(). |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hfi1: Prevent panic when SDMA is disabled
If the hfi1 module is loaded with HFI1_CAP_SDMA off, a call to
hfi1_write_iter() will dereference a NULL pointer and panic. A typical
stack frame is:
sdma_select_user_engine [hfi1]
hfi1_user_sdma_process_request [hfi1]
hfi1_write_iter [hfi1]
do_iter_readv_writev
do_iter_write
vfs_writev
do_writev
do_syscall_64
The fix is to test for SDMA in hfi1_write_iter() and fail the I/O with
EINVAL. |
| In the Linux kernel, the following vulnerability has been resolved:
mfd: davinci_voicecodec: Fix possible null-ptr-deref davinci_vc_probe()
It will cause null-ptr-deref when using 'res', if platform_get_resource()
returns NULL, so move using 'res' after devm_ioremap_resource() that
will check it to avoid null-ptr-deref.
And use devm_platform_get_and_ioremap_resource() to simplify code. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/mdp5: Return error code in mdp5_mixer_release when deadlock is detected
There is a possibility for mdp5_get_global_state to return
-EDEADLK when acquiring the modeset lock, but currently global_state in
mdp5_mixer_release doesn't check for if an error is returned.
To avoid a NULL dereference error, let's have mdp5_mixer_release
check if an error is returned and propagate that error.
Patchwork: https://patchwork.freedesktop.org/patch/485181/ |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/mdp5: Return error code in mdp5_pipe_release when deadlock is detected
mdp5_get_global_state runs the risk of hitting a -EDEADLK when acquiring
the modeset lock, but currently mdp5_pipe_release doesn't check for if
an error is returned. Because of this, there is a possibility of
mdp5_pipe_release hitting a NULL dereference error.
To avoid this, let's have mdp5_pipe_release check if
mdp5_get_global_state returns an error and propogate that error.
Changes since v1:
- Separated declaration and initialization of *new_state to avoid
compiler warning
- Fixed some spelling mistakes in commit message
Changes since v2:
- Return 0 in case where hwpipe is NULL as this is considered normal
behavior
- Added 2nd patch in series to fix a similar NULL dereference issue in
mdp5_mixer_release
Patchwork: https://patchwork.freedesktop.org/patch/485179/ |
| In the Linux kernel, the following vulnerability has been resolved:
rtla: Avoid record NULL pointer dereference
Fix the following null/deref_null.cocci errors:
./tools/tracing/rtla/src/osnoise_hist.c:870:31-36: ERROR: record is NULL but dereferenced.
./tools/tracing/rtla/src/osnoise_top.c:650:31-36: ERROR: record is NULL but dereferenced.
./tools/tracing/rtla/src/timerlat_hist.c:905:31-36: ERROR: record is NULL but dereferenced.
./tools/tracing/rtla/src/timerlat_top.c:700:31-36: ERROR: record is NULL but dereferenced.
"record" is NULL before calling osnoise_init_trace_tool.
Add a tag "out_free" to avoid dereferring a NULL pointer. |