CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
net/ipv6: avoid possible UAF in ip6_route_mpath_notify()
syzbot found another use-after-free in ip6_route_mpath_notify() [1]
Commit f7225172f25a ("net/ipv6: prevent use after free in
ip6_route_mpath_notify") was not able to fix the root cause.
We need to defer the fib6_info_release() calls after
ip6_route_mpath_notify(), in the cleanup phase.
[1]
BUG: KASAN: slab-use-after-free in rt6_fill_node+0x1460/0x1ac0
Read of size 4 at addr ffff88809a07fc64 by task syz-executor.2/23037
CPU: 0 PID: 23037 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-01035-gea7f3cfaa588 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2e0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x167/0x540 mm/kasan/report.c:488
kasan_report+0x142/0x180 mm/kasan/report.c:601
rt6_fill_node+0x1460/0x1ac0
inet6_rt_notify+0x13b/0x290 net/ipv6/route.c:6184
ip6_route_mpath_notify net/ipv6/route.c:5198 [inline]
ip6_route_multipath_add net/ipv6/route.c:5404 [inline]
inet6_rtm_newroute+0x1d0f/0x2300 net/ipv6/route.c:5517
rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6597
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367
netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7f73dd87dda9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f73de6550c8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f73dd9ac050 RCX: 00007f73dd87dda9
RDX: 0000000000000000 RSI: 0000000020000140 RDI: 0000000000000005
RBP: 00007f73dd8ca47a R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000006e R14: 00007f73dd9ac050 R15: 00007ffdbdeb7858
</TASK>
Allocated by task 23037:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:372 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:389
kasan_kmalloc include/linux/kasan.h:211 [inline]
__do_kmalloc_node mm/slub.c:3981 [inline]
__kmalloc+0x22e/0x490 mm/slub.c:3994
kmalloc include/linux/slab.h:594 [inline]
kzalloc include/linux/slab.h:711 [inline]
fib6_info_alloc+0x2e/0xf0 net/ipv6/ip6_fib.c:155
ip6_route_info_create+0x445/0x12b0 net/ipv6/route.c:3758
ip6_route_multipath_add net/ipv6/route.c:5298 [inline]
inet6_rtm_newroute+0x744/0x2300 net/ipv6/route.c:5517
rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6597
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367
netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
Freed by task 16:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x4e/0x60 mm/kasan/generic.c:640
poison_slab_object+0xa6/0xe0 m
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_conntrack_h323: Add protection for bmp length out of range
UBSAN load reports an exception of BRK#5515 SHIFT_ISSUE:Bitwise shifts
that are out of bounds for their data type.
vmlinux get_bitmap(b=75) + 712
<net/netfilter/nf_conntrack_h323_asn1.c:0>
vmlinux decode_seq(bs=0xFFFFFFD008037000, f=0xFFFFFFD008037018, level=134443100) + 1956
<net/netfilter/nf_conntrack_h323_asn1.c:592>
vmlinux decode_choice(base=0xFFFFFFD0080370F0, level=23843636) + 1216
<net/netfilter/nf_conntrack_h323_asn1.c:814>
vmlinux decode_seq(f=0xFFFFFFD0080371A8, level=134443500) + 812
<net/netfilter/nf_conntrack_h323_asn1.c:576>
vmlinux decode_choice(base=0xFFFFFFD008037280, level=0) + 1216
<net/netfilter/nf_conntrack_h323_asn1.c:814>
vmlinux DecodeRasMessage() + 304
<net/netfilter/nf_conntrack_h323_asn1.c:833>
vmlinux ras_help() + 684
<net/netfilter/nf_conntrack_h323_main.c:1728>
vmlinux nf_confirm() + 188
<net/netfilter/nf_conntrack_proto.c:137>
Due to abnormal data in skb->data, the extension bitmap length
exceeds 32 when decoding ras message then uses the length to make
a shift operation. It will change into negative after several loop.
UBSAN load could detect a negative shift as an undefined behaviour
and reports exception.
So we add the protection to avoid the length exceeding 32. Or else
it will return out of range error and stop decoding. |
In the Linux kernel, the following vulnerability has been resolved:
nvme-fc: do not wait in vain when unloading module
The module exit path has race between deleting all controllers and
freeing 'left over IDs'. To prevent double free a synchronization
between nvme_delete_ctrl and ida_destroy has been added by the initial
commit.
There is some logic around trying to prevent from hanging forever in
wait_for_completion, though it does not handling all cases. E.g.
blktests is able to reproduce the situation where the module unload
hangs forever.
If we completely rely on the cleanup code executed from the
nvme_delete_ctrl path, all IDs will be freed eventually. This makes
calling ida_destroy unnecessary. We only have to ensure that all
nvme_delete_ctrl code has been executed before we leave
nvme_fc_exit_module. This is done by flushing the nvme_delete_wq
workqueue.
While at it, remove the unused nvme_fc_wq workqueue too. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: core: Add TMF to tmr_list handling
An abort that is responded to by iSCSI itself is added to tmr_list but does
not go to target core. A LUN_RESET that goes through tmr_list takes a
refcounter on the abort and waits for completion. However, the abort will
be never complete because it was not started in target core.
Unable to locate ITT: 0x05000000 on CID: 0
Unable to locate RefTaskTag: 0x05000000 on CID: 0.
wait_for_tasks: Stopping tmf LUN_RESET with tag 0x0 ref_task_tag 0x0 i_state 34 t_state ISTATE_PROCESSING refcnt 2 transport_state active,stop,fabric_stop
wait for tasks: tmf LUN_RESET with tag 0x0 ref_task_tag 0x0 i_state 34 t_state ISTATE_PROCESSING refcnt 2 transport_state active,stop,fabric_stop
...
INFO: task kworker/0:2:49 blocked for more than 491 seconds.
task:kworker/0:2 state:D stack: 0 pid: 49 ppid: 2 flags:0x00000800
Workqueue: events target_tmr_work [target_core_mod]
Call Trace:
__switch_to+0x2c4/0x470
_schedule+0x314/0x1730
schedule+0x64/0x130
schedule_timeout+0x168/0x430
wait_for_completion+0x140/0x270
target_put_cmd_and_wait+0x64/0xb0 [target_core_mod]
core_tmr_lun_reset+0x30/0xa0 [target_core_mod]
target_tmr_work+0xc8/0x1b0 [target_core_mod]
process_one_work+0x2d4/0x5d0
worker_thread+0x78/0x6c0
To fix this, only add abort to tmr_list if it will be handled by target
core. |
In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Fix a memleak in init_credit_return
When dma_alloc_coherent fails to allocate dd->cr_base[i].va,
init_credit_return should deallocate dd->cr_base and
dd->cr_base[i] that allocated before. Or those resources
would be never freed and a memleak is triggered. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: set dormant flag on hook register failure
We need to set the dormant flag again if we fail to register
the hooks.
During memory pressure hook registration can fail and we end up
with a table marked as active but no registered hooks.
On table/base chain deletion, nf_tables will attempt to unregister
the hook again which yields a warn splat from the nftables core. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix memory leak in dm_sw_fini()
After destroying dmub_srv, the memory associated with it is
not freed, causing a memory leak:
unreferenced object 0xffff896302b45800 (size 1024):
comm "(udev-worker)", pid 222, jiffies 4294894636
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 6265fd77):
[<ffffffff993495ed>] kmalloc_trace+0x29d/0x340
[<ffffffffc0ea4a94>] dm_dmub_sw_init+0xb4/0x450 [amdgpu]
[<ffffffffc0ea4e55>] dm_sw_init+0x15/0x2b0 [amdgpu]
[<ffffffffc0ba8557>] amdgpu_device_init+0x1417/0x24e0 [amdgpu]
[<ffffffffc0bab285>] amdgpu_driver_load_kms+0x15/0x190 [amdgpu]
[<ffffffffc0ba09c7>] amdgpu_pci_probe+0x187/0x4e0 [amdgpu]
[<ffffffff9968fd1e>] local_pci_probe+0x3e/0x90
[<ffffffff996918a3>] pci_device_probe+0xc3/0x230
[<ffffffff99805872>] really_probe+0xe2/0x480
[<ffffffff99805c98>] __driver_probe_device+0x78/0x160
[<ffffffff99805daf>] driver_probe_device+0x1f/0x90
[<ffffffff9980601e>] __driver_attach+0xce/0x1c0
[<ffffffff99803170>] bus_for_each_dev+0x70/0xc0
[<ffffffff99804822>] bus_add_driver+0x112/0x210
[<ffffffff99807245>] driver_register+0x55/0x100
[<ffffffff990012d1>] do_one_initcall+0x41/0x300
Fix this by freeing dmub_srv after destroying it. |
In the Linux kernel, the following vulnerability has been resolved:
nfc: nci: free rx_data_reassembly skb on NCI device cleanup
rx_data_reassembly skb is stored during NCI data exchange for processing
fragmented packets. It is dropped only when the last fragment is processed
or when an NTF packet with NCI_OP_RF_DEACTIVATE_NTF opcode is received.
However, the NCI device may be deallocated before that which leads to skb
leak.
As by design the rx_data_reassembly skb is bound to the NCI device and
nothing prevents the device to be freed before the skb is processed in
some way and cleaned, free it on the NCI device cleanup.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
In the Linux kernel, the following vulnerability has been resolved:
hv_netvsc: Register VF in netvsc_probe if NET_DEVICE_REGISTER missed
If hv_netvsc driver is unloaded and reloaded, the NET_DEVICE_REGISTER
handler cannot perform VF register successfully as the register call
is received before netvsc_probe is finished. This is because we
register register_netdevice_notifier() very early( even before
vmbus_driver_register()).
To fix this, we try to register each such matching VF( if it is visible
as a netdevice) at the end of netvsc_probe. |
In the Linux kernel, the following vulnerability has been resolved:
amdkfd: use calloc instead of kzalloc to avoid integer overflow
This uses calloc instead of doing the multiplication which might
overflow. |
In the Linux kernel, the following vulnerability has been resolved:
x86, relocs: Ignore relocations in .notes section
When building with CONFIG_XEN_PV=y, .text symbols are emitted into
the .notes section so that Xen can find the "startup_xen" entry point.
This information is used prior to booting the kernel, so relocations
are not useful. In fact, performing relocations against the .notes
section means that the KASLR base is exposed since /sys/kernel/notes
is world-readable.
To avoid leaking the KASLR base without breaking unprivileged tools that
are expecting to read /sys/kernel/notes, skip performing relocations in
the .notes section. The values readable in .notes are then identical to
those found in System.map. |
In the Linux kernel, the following vulnerability has been resolved:
vfio/fsl-mc: Block calling interrupt handler without trigger
The eventfd_ctx trigger pointer of the vfio_fsl_mc_irq object is
initially NULL and may become NULL if the user sets the trigger
eventfd to -1. The interrupt handler itself is guaranteed that
trigger is always valid between request_irq() and free_irq(), but
the loopback testing mechanisms to invoke the handler function
need to test the trigger. The triggering and setting ioctl paths
both make use of igate and are therefore mutually exclusive.
The vfio-fsl-mc driver does not make use of irqfds, nor does it
support any sort of masking operations, therefore unlike vfio-pci
and vfio-platform, the flow can remain essentially unchanged. |
In the Linux kernel, the following vulnerability has been resolved:
vfio/pci: Create persistent INTx handler
A vulnerability exists where the eventfd for INTx signaling can be
deconfigured, which unregisters the IRQ handler but still allows
eventfds to be signaled with a NULL context through the SET_IRQS ioctl
or through unmask irqfd if the device interrupt is pending.
Ideally this could be solved with some additional locking; the igate
mutex serializes the ioctl and config space accesses, and the interrupt
handler is unregistered relative to the trigger, but the irqfd path
runs asynchronous to those. The igate mutex cannot be acquired from the
atomic context of the eventfd wake function. Disabling the irqfd
relative to the eventfd registration is potentially incompatible with
existing userspace.
As a result, the solution implemented here moves configuration of the
INTx interrupt handler to track the lifetime of the INTx context object
and irq_type configuration, rather than registration of a particular
trigger eventfd. Synchronization is added between the ioctl path and
eventfd_signal() wrapper such that the eventfd trigger can be
dynamically updated relative to in-flight interrupts or irqfd callbacks. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_chain_filter: handle NETDEV_UNREGISTER for inet/ingress basechain
Remove netdevice from inet/ingress basechain in case NETDEV_UNREGISTER
event is reported, otherwise a stale reference to netdevice remains in
the hook list. |
In the Linux kernel, the following vulnerability has been resolved:
riscv: Sparse-Memory/vmemmap out-of-bounds fix
Offset vmemmap so that the first page of vmemmap will be mapped
to the first page of physical memory in order to ensure that
vmemmap’s bounds will be respected during
pfn_to_page()/page_to_pfn() operations.
The conversion macros will produce correct SV39/48/57 addresses
for every possible/valid DRAM_BASE inside the physical memory limits.
v2:Address Alex's comments |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fsl-qdma: fix SoC may hang on 16 byte unaligned read
There is chip (ls1028a) errata:
The SoC may hang on 16 byte unaligned read transactions by QDMA.
Unaligned read transactions initiated by QDMA may stall in the NOC
(Network On-Chip), causing a deadlock condition. Stalled transactions will
trigger completion timeouts in PCIe controller.
Workaround:
Enable prefetch by setting the source descriptor prefetchable bit
( SD[PF] = 1 ).
Implement this workaround. |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fsl-qdma: init irq after reg initialization
Initialize the qDMA irqs after the registers are configured so that
interrupts that may have been pending from a primary kernel don't get
processed by the irq handler before it is ready to and cause panic with
the following trace:
Call trace:
fsl_qdma_queue_handler+0xf8/0x3e8
__handle_irq_event_percpu+0x78/0x2b0
handle_irq_event_percpu+0x1c/0x68
handle_irq_event+0x44/0x78
handle_fasteoi_irq+0xc8/0x178
generic_handle_irq+0x24/0x38
__handle_domain_irq+0x90/0x100
gic_handle_irq+0x5c/0xb8
el1_irq+0xb8/0x180
_raw_spin_unlock_irqrestore+0x14/0x40
__setup_irq+0x4bc/0x798
request_threaded_irq+0xd8/0x190
devm_request_threaded_irq+0x74/0xe8
fsl_qdma_probe+0x4d4/0xca8
platform_drv_probe+0x50/0xa0
really_probe+0xe0/0x3f8
driver_probe_device+0x64/0x130
device_driver_attach+0x6c/0x78
__driver_attach+0xbc/0x158
bus_for_each_dev+0x5c/0x98
driver_attach+0x20/0x28
bus_add_driver+0x158/0x220
driver_register+0x60/0x110
__platform_driver_register+0x44/0x50
fsl_qdma_driver_init+0x18/0x20
do_one_initcall+0x48/0x258
kernel_init_freeable+0x1a4/0x23c
kernel_init+0x10/0xf8
ret_from_fork+0x10/0x18 |
In the Linux kernel, the following vulnerability has been resolved:
mmc: mmci: stm32: fix DMA API overlapping mappings warning
Turning on CONFIG_DMA_API_DEBUG_SG results in the following warning:
DMA-API: mmci-pl18x 48220000.mmc: cacheline tracking EEXIST,
overlapping mappings aren't supported
WARNING: CPU: 1 PID: 51 at kernel/dma/debug.c:568
add_dma_entry+0x234/0x2f4
Modules linked in:
CPU: 1 PID: 51 Comm: kworker/1:2 Not tainted 6.1.28 #1
Hardware name: STMicroelectronics STM32MP257F-EV1 Evaluation Board (DT)
Workqueue: events_freezable mmc_rescan
Call trace:
add_dma_entry+0x234/0x2f4
debug_dma_map_sg+0x198/0x350
__dma_map_sg_attrs+0xa0/0x110
dma_map_sg_attrs+0x10/0x2c
sdmmc_idma_prep_data+0x80/0xc0
mmci_prep_data+0x38/0x84
mmci_start_data+0x108/0x2dc
mmci_request+0xe4/0x190
__mmc_start_request+0x68/0x140
mmc_start_request+0x94/0xc0
mmc_wait_for_req+0x70/0x100
mmc_send_tuning+0x108/0x1ac
sdmmc_execute_tuning+0x14c/0x210
mmc_execute_tuning+0x48/0xec
mmc_sd_init_uhs_card.part.0+0x208/0x464
mmc_sd_init_card+0x318/0x89c
mmc_attach_sd+0xe4/0x180
mmc_rescan+0x244/0x320
DMA API debug brings to light leaking dma-mappings as dma_map_sg and
dma_unmap_sg are not correctly balanced.
If an error occurs in mmci_cmd_irq function, only mmci_dma_error
function is called and as this API is not managed on stm32 variant,
dma_unmap_sg is never called in this error path. |
In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix possible deadlock in subflow diag
Syzbot and Eric reported a lockdep splat in the subflow diag:
WARNING: possible circular locking dependency detected
6.8.0-rc4-syzkaller-00212-g40b9385dd8e6 #0 Not tainted
syz-executor.2/24141 is trying to acquire lock:
ffff888045870130 (k-sk_lock-AF_INET6){+.+.}-{0:0}, at:
tcp_diag_put_ulp net/ipv4/tcp_diag.c:100 [inline]
ffff888045870130 (k-sk_lock-AF_INET6){+.+.}-{0:0}, at:
tcp_diag_get_aux+0x738/0x830 net/ipv4/tcp_diag.c:137
but task is already holding lock:
ffffc9000135e488 (&h->lhash2[i].lock){+.+.}-{2:2}, at: spin_lock
include/linux/spinlock.h:351 [inline]
ffffc9000135e488 (&h->lhash2[i].lock){+.+.}-{2:2}, at:
inet_diag_dump_icsk+0x39f/0x1f80 net/ipv4/inet_diag.c:1038
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&h->lhash2[i].lock){+.+.}-{2:2}:
lock_acquire+0x1e3/0x530 kernel/locking/lockdep.c:5754
__raw_spin_lock include/linux/spinlock_api_smp.h:133 [inline]
_raw_spin_lock+0x2e/0x40 kernel/locking/spinlock.c:154
spin_lock include/linux/spinlock.h:351 [inline]
__inet_hash+0x335/0xbe0 net/ipv4/inet_hashtables.c:743
inet_csk_listen_start+0x23a/0x320 net/ipv4/inet_connection_sock.c:1261
__inet_listen_sk+0x2a2/0x770 net/ipv4/af_inet.c:217
inet_listen+0xa3/0x110 net/ipv4/af_inet.c:239
rds_tcp_listen_init+0x3fd/0x5a0 net/rds/tcp_listen.c:316
rds_tcp_init_net+0x141/0x320 net/rds/tcp.c:577
ops_init+0x352/0x610 net/core/net_namespace.c:136
__register_pernet_operations net/core/net_namespace.c:1214 [inline]
register_pernet_operations+0x2cb/0x660 net/core/net_namespace.c:1283
register_pernet_device+0x33/0x80 net/core/net_namespace.c:1370
rds_tcp_init+0x62/0xd0 net/rds/tcp.c:735
do_one_initcall+0x238/0x830 init/main.c:1236
do_initcall_level+0x157/0x210 init/main.c:1298
do_initcalls+0x3f/0x80 init/main.c:1314
kernel_init_freeable+0x42f/0x5d0 init/main.c:1551
kernel_init+0x1d/0x2a0 init/main.c:1441
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1b/0x30 arch/x86/entry/entry_64.S:242
-> #0 (k-sk_lock-AF_INET6){+.+.}-{0:0}:
check_prev_add kernel/locking/lockdep.c:3134 [inline]
check_prevs_add kernel/locking/lockdep.c:3253 [inline]
validate_chain+0x18ca/0x58e0 kernel/locking/lockdep.c:3869
__lock_acquire+0x1345/0x1fd0 kernel/locking/lockdep.c:5137
lock_acquire+0x1e3/0x530 kernel/locking/lockdep.c:5754
lock_sock_fast include/net/sock.h:1723 [inline]
subflow_get_info+0x166/0xd20 net/mptcp/diag.c:28
tcp_diag_put_ulp net/ipv4/tcp_diag.c:100 [inline]
tcp_diag_get_aux+0x738/0x830 net/ipv4/tcp_diag.c:137
inet_sk_diag_fill+0x10ed/0x1e00 net/ipv4/inet_diag.c:345
inet_diag_dump_icsk+0x55b/0x1f80 net/ipv4/inet_diag.c:1061
__inet_diag_dump+0x211/0x3a0 net/ipv4/inet_diag.c:1263
inet_diag_dump_compat+0x1c1/0x2d0 net/ipv4/inet_diag.c:1371
netlink_dump+0x59b/0xc80 net/netlink/af_netlink.c:2264
__netlink_dump_start+0x5df/0x790 net/netlink/af_netlink.c:2370
netlink_dump_start include/linux/netlink.h:338 [inline]
inet_diag_rcv_msg_compat+0x209/0x4c0 net/ipv4/inet_diag.c:1405
sock_diag_rcv_msg+0xe7/0x410
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543
sock_diag_rcv+0x2a/0x40 net/core/sock_diag.c:280
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367
netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
As noted by Eric we can break the lock dependency chain avoid
dumping
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix race condition on enabling fast-xmit
fast-xmit must only be enabled after the sta has been uploaded to the driver,
otherwise it could end up passing the not-yet-uploaded sta via drv_tx calls
to the driver, leading to potential crashes because of uninitialized drv_priv
data.
Add a missing sta->uploaded check and re-check fast xmit after inserting a sta. |