CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
cxl: fix possible null-ptr-deref in cxl_guest_init_afu|adapter()
If device_register() fails in cxl_register_afu|adapter(), the device
is not added, device_unregister() can not be called in the error path,
otherwise it will cause a null-ptr-deref because of removing not added
device.
As comment of device_register() says, it should use put_device() to give
up the reference in the error path. So split device_unregister() into
device_del() and put_device(), then goes to put dev when register fails. |
In the Linux kernel, the following vulnerability has been resolved:
drm/mipi-dsi: Detach devices when removing the host
Whenever the MIPI-DSI host is unregistered, the code of
mipi_dsi_host_unregister() loops over every device currently found on that
bus and will unregister it.
However, it doesn't detach it from the bus first, which leads to all kind
of resource leaks if the host wants to perform some clean up whenever a
device is detached. |
OpenPLC Runtime v3 contains an input validation flaw in the /upload-program-action endpoint: the epoch_time field supplied during program uploads is not validated and can be crafted to induce corruption of the programs database. After a successful malformed upload the runtime continues to operate until a restart; on restart the runtime can fail to start because of corrupted database entries, resulting in persistent denial of service requiring complete rebase of the product to recover. This vulnerability was remediated by commit 095ee09623dd229b64ad3a1db38a901a3772f6fc. |
The GiveWP – Donation Plugin and Fundraising Platform plugin for WordPress is vulnerable to Information Exposure in all versions up to, and including, 4.10.0 via the 'registerGetForm', 'registerGetForms', 'registerGetCampaign' and 'registerGetCampaigns' functions due to a missing capability check. This makes it possible for unauthenticated attackers to extract data from private and draft donation forms, as well as archived campaigns. |
In the Linux kernel, the following vulnerability has been resolved:
xen/gntdev: Accommodate VMA splitting
Prior to this commit, the gntdev driver code did not handle the
following scenario correctly with paravirtualized (PV) Xen domains:
* User process sets up a gntdev mapping composed of two grant mappings
(i.e., two pages shared by another Xen domain).
* User process munmap()s one of the pages.
* User process munmap()s the remaining page.
* User process exits.
In the scenario above, the user process would cause the kernel to log
the following messages in dmesg for the first munmap(), and the second
munmap() call would result in similar log messages:
BUG: Bad page map in process doublemap.test pte:... pmd:...
page:0000000057c97bff refcount:1 mapcount:-1 \
mapping:0000000000000000 index:0x0 pfn:...
...
page dumped because: bad pte
...
file:gntdev fault:0x0 mmap:gntdev_mmap [xen_gntdev] readpage:0x0
...
Call Trace:
<TASK>
dump_stack_lvl+0x46/0x5e
print_bad_pte.cold+0x66/0xb6
unmap_page_range+0x7e5/0xdc0
unmap_vmas+0x78/0xf0
unmap_region+0xa8/0x110
__do_munmap+0x1ea/0x4e0
__vm_munmap+0x75/0x120
__x64_sys_munmap+0x28/0x40
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x61/0xcb
...
For each munmap() call, the Xen hypervisor (if built with CONFIG_DEBUG)
would print out the following and trigger a general protection fault in
the affected Xen PV domain:
(XEN) d0v... Attempt to implicitly unmap d0's grant PTE ...
(XEN) d0v... Attempt to implicitly unmap d0's grant PTE ...
As of this writing, gntdev_grant_map structure's vma field (referred to
as map->vma below) is mainly used for checking the start and end
addresses of mappings. However, with split VMAs, these may change, and
there could be more than one VMA associated with a gntdev mapping.
Hence, remove the use of map->vma and rely on map->pages_vm_start for
the original start address and on (map->count << PAGE_SHIFT) for the
original mapping size. Let the invalidate() and find_special_page()
hooks use these.
Also, given that there can be multiple VMAs associated with a gntdev
mapping, move the "mmu_interval_notifier_remove(&map->notifier)" call to
the end of gntdev_put_map, so that the MMU notifier is only removed
after the closing of the last remaining VMA.
Finally, use an atomic to prevent inadvertent gntdev mapping re-use,
instead of using the map->live_grants atomic counter and/or the map->vma
pointer (the latter of which is now removed). This prevents the
userspace from mmap()'ing (with MAP_FIXED) a gntdev mapping over the
same address range as a previously set up gntdev mapping. This scenario
can be summarized with the following call-trace, which was valid prior
to this commit:
mmap
gntdev_mmap
mmap (repeat mmap with MAP_FIXED over the same address range)
gntdev_invalidate
unmap_grant_pages (sets 'being_removed' entries to true)
gnttab_unmap_refs_async
unmap_single_vma
gntdev_mmap (maps the shared pages again)
munmap
gntdev_invalidate
unmap_grant_pages
(no-op because 'being_removed' entries are true)
unmap_single_vma (For PV domains, Xen reports that a granted page
is being unmapped and triggers a general protection fault in the
affected domain, if Xen was built with CONFIG_DEBUG)
The fix for this last scenario could be worth its own commit, but we
opted for a single commit, because removing the gntdev_grant_map
structure's vma field requires guarding the entry to gntdev_mmap(), and
the live_grants atomic counter is not sufficient on its own to prevent
the mmap() over a pre-existing mapping. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Make sure "ib_port" is valid when access sysfs node
The "ib_port" structure must be set before adding the sysfs kobject,
and reset after removing it, otherwise it may crash when accessing
the sysfs node:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000050
Mem abort info:
ESR = 0x96000006
Exception class = DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
user pgtable: 4k pages, 48-bit VAs, pgdp = 00000000e85f5ba5
[0000000000000050] pgd=0000000848fd9003, pud=000000085b387003, pmd=0000000000000000
Internal error: Oops: 96000006 [#2] PREEMPT SMP
Modules linked in: ib_umad(O) mlx5_ib(O) nfnetlink_cttimeout(E) nfnetlink(E) act_gact(E) cls_flower(E) sch_ingress(E) openvswitch(E) nsh(E) nf_nat_ipv6(E) nf_nat_ipv4(E) nf_conncount(E) nf_nat(E) nf_conntrack(E) nf_defrag_ipv6(E) nf_defrag_ipv4(E) mst_pciconf(O) ipmi_devintf(E) ipmi_msghandler(E) ipmb_dev_int(OE) mlx5_core(O) mlxfw(O) mlxdevm(O) auxiliary(O) ib_uverbs(O) ib_core(O) mlx_compat(O) psample(E) sbsa_gwdt(E) uio_pdrv_genirq(E) uio(E) mlxbf_pmc(OE) mlxbf_gige(OE) mlxbf_tmfifo(OE) gpio_mlxbf2(OE) pwr_mlxbf(OE) mlx_trio(OE) i2c_mlxbf(OE) mlx_bootctl(OE) bluefield_edac(OE) knem(O) ip_tables(E) ipv6(E) crc_ccitt(E) [last unloaded: mst_pci]
Process grep (pid: 3372, stack limit = 0x0000000022055c92)
CPU: 5 PID: 3372 Comm: grep Tainted: G D OE 4.19.161-mlnx.47.gadcd9e3 #1
Hardware name: https://www.mellanox.com BlueField SoC/BlueField SoC, BIOS BlueField:3.9.2-15-ga2403ab Sep 8 2022
pstate: 40000005 (nZcv daif -PAN -UAO)
pc : hw_stat_port_show+0x4c/0x80 [ib_core]
lr : port_attr_show+0x40/0x58 [ib_core]
sp : ffff000029f43b50
x29: ffff000029f43b50 x28: 0000000019375000
x27: ffff8007b821a540 x26: ffff000029f43e30
x25: 0000000000008000 x24: ffff000000eaa958
x23: 0000000000001000 x22: ffff8007a4ce3000
x21: ffff8007baff8000 x20: ffff8007b9066ac0
x19: ffff8007bae97578 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000
x15: 0000000000000000 x14: 0000000000000000
x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000
x9 : 0000000000000000 x8 : ffff8007a4ce4000
x7 : 0000000000000000 x6 : 000000000000003f
x5 : ffff000000e6a280 x4 : ffff8007a4ce3000
x3 : 0000000000000000 x2 : aaaaaaaaaaaaaaab
x1 : ffff8007b9066a10 x0 : ffff8007baff8000
Call trace:
hw_stat_port_show+0x4c/0x80 [ib_core]
port_attr_show+0x40/0x58 [ib_core]
sysfs_kf_seq_show+0x8c/0x150
kernfs_seq_show+0x44/0x50
seq_read+0x1b4/0x45c
kernfs_fop_read+0x148/0x1d8
__vfs_read+0x58/0x180
vfs_read+0x94/0x154
ksys_read+0x68/0xd8
__arm64_sys_read+0x28/0x34
el0_svc_common+0x88/0x18c
el0_svc_handler+0x78/0x94
el0_svc+0x8/0xe8
Code: f2955562 aa1603e4 aa1503e0 f9405683 (f9402861) |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd: fix potential memory leak
This patch fix potential memory leak (clk_src) when function run
into last return NULL.
s/free/kfree/ - Alex |
In the Linux kernel, the following vulnerability has been resolved:
net: enetc: avoid buffer leaks on xdp_do_redirect() failure
Before enetc_clean_rx_ring_xdp() calls xdp_do_redirect(), each software
BD in the RX ring between index orig_i and i can have one of 2 refcount
values on its page.
We are the owner of the current buffer that is being processed, so the
refcount will be at least 1.
If the current owner of the buffer at the diametrically opposed index
in the RX ring (i.o.w, the other half of this page) has not yet called
kfree(), this page's refcount could even be 2.
enetc_page_reusable() in enetc_flip_rx_buff() tests for the page
refcount against 1, and [ if it's 2 ] does not attempt to reuse it.
But if enetc_flip_rx_buff() is put after the xdp_do_redirect() call,
the page refcount can have one of 3 values. It can also be 0, if there
is no owner of the other page half, and xdp_do_redirect() for this
buffer ran so far that it triggered a flush of the devmap/cpumap bulk
queue, and the consumers of those bulk queues also freed the buffer,
all by the time xdp_do_redirect() returns the execution back to enetc.
This is the reason why enetc_flip_rx_buff() is called before
xdp_do_redirect(), but there is a big flaw with that reasoning:
enetc_flip_rx_buff() will set rx_swbd->page = NULL on both sides of the
enetc_page_reusable() branch, and if xdp_do_redirect() returns an error,
we call enetc_xdp_free(), which does not deal gracefully with that.
In fact, what happens is quite special. The page refcounts start as 1.
enetc_flip_rx_buff() figures they're reusable, transfers these
rx_swbd->page pointers to a different rx_swbd in enetc_reuse_page(), and
bumps the refcount to 2. When xdp_do_redirect() later returns an error,
we call the no-op enetc_xdp_free(), but we still haven't lost the
reference to that page. A copy of it is still at rx_ring->next_to_alloc,
but that has refcount 2 (and there are no concurrent owners of it in
flight, to drop the refcount). What really kills the system is when
we'll flip the rx_swbd->page the second time around. With an updated
refcount of 2, the page will not be reusable and we'll really leak it.
Then enetc_new_page() will have to allocate more pages, which will then
eventually leak again on further errors from xdp_do_redirect().
The problem, summarized, is that we zeroize rx_swbd->page before we're
completely done with it, and this makes it impossible for the error path
to do something with it.
Since the packet is potentially multi-buffer and therefore the
rx_swbd->page is potentially an array, manual passing of the old
pointers between enetc_flip_rx_buff() and enetc_xdp_free() is a bit
difficult.
For the sake of going with a simple solution, we accept the possibility
of racing with xdp_do_redirect(), and we move the flip procedure to
execute only on the redirect success path. By racing, I mean that the
page may be deemed as not reusable by enetc (having a refcount of 0),
but there will be no leak in that case, either.
Once we accept that, we have something better to do with buffers on
XDP_REDIRECT failure. Since we haven't performed half-page flipping yet,
we won't, either (and this way, we can avoid enetc_xdp_free()
completely, which gives the entire page to the slab allocator).
Instead, we'll call enetc_xdp_drop(), which will recycle this half of
the buffer back to the RX ring. |
A use of externally-controlled format string vulnerability has been reported to affect several QNAP operating system versions. If a remote attacker gains an administrator account, they can then exploit the vulnerability to obtain secret data or modify memory.
We have already fixed the vulnerability in the following versions:
QTS 5.2.6.3195 build 20250715 and later
QuTS hero h5.2.6.3195 build 20250715 and later |
The endpoint POST /api/staff/get-new-tickets concatenates the user-controlled parameter departmentId directly into the SQL WHERE clause without parameter binding. As a result, an authenticated staff user (level ≥ 1) can inject SQL to alter the filter logic, effectively bypassing department scoping and disclosing tickets beyond their intended access.This issue affects OpenSupports: 4.11.0. |
An SQL injection vulnerability has been reported to affect Qsync Central. If a remote attacker gains a user account, they can then exploit the vulnerability to execute unauthorized code or commands.
We have already fixed the vulnerability in the following version:
Qsync Central 5.0.0.2 ( 2025/07/31 ) and later |
The module will parse a <pattern> node which is not a child of a structural node. The node will be deleted after creation but might be accessed later leading to a use after free. |
A SQL injection vulnerability was discovered in the /articles endpoint of MyClub 0.5, affecting the query parameters Content, GroupName, PersonName, lastUpdate, pool, and title. Due to insufficient input sanitisation, an unauthenticated remote attacker could inject arbitrary SQL commands via a crafted GET request, potentially leading to information disclosure or manipulation of the database. |
Unity Runtime before 2025-10-02 on Android, Windows, macOS, and Linux allows argument injection that can result in loading of library code from an unintended location. If an application was built with a version of Unity Editor that had the vulnerable Unity Runtime code, then an adversary may be able to execute code on, and exfiltrate confidential information from, the machine on which that application is running. NOTE: product status is provided for Unity Editor because that is the information available from the Supplier. However, updating Unity Editor typically does not address the effects of the vulnerability; instead, it is necessary to rebuild and redeploy all affected applications. |
Claude Code is an agentic coding tool. Versions below 1.0.120 failed to account for symlinks when checking permission deny rules. If a user explicitly denied Claude Code access to a file and Claude Code had access to a symlink pointing to that file, it was possible for Claude Code to access the file. Users on standard Claude Code auto-update will have received this fix automatically. Users performing manual updates are advised to update to the latest version. This issue is fixed in version 1.0.120. |
phpMyFAQ is an open source FAQ web application. Versions 4.0-nightly-2025-10-03 and below do not enforce uniqueness of email addresses during user registration. This allows multiple distinct accounts to be created with the same email. Because email is often used as an identifier for password resets, notifications, and administrative actions, this flaw can cause account ambiguity and, in certain configurations, may lead to privilege escalation or account takeover. This issue is fixed in version 4.0.13. |
A stored Cross-Site Scripting (XSS) vulnerability has been discovered in Emlog Pro 2.5.19. The vulnerability exists in the email template configuration component located at /admin/setting.php?action=mail, which allows administrators to input HTML code that is not properly sanitized, leading to persistent JavaScript execution. |
Cursor is a code editor built for programming with AI. Versions 1.6 and below are vulnerable to Remote Code Execution (RCE) attacks through Visual Studio Code Workspaces. Workspaces allow users to open more than a single folder and save specific settings (pretty similar to .vscode/settings.json) for the folders / project. An untitled workspace is automatically created by VS Code (untitled.code-workspace), which contains all the folders and workspace settings from the user's current session, opening up an entire new attack vector if the user has a .code-workspace file in path (either untitled created automatically or a saved one). If an attacker is able to hijack the chat context of the victim (such as via a compromised MCP server), they can use prompt injection to make the Cursor Agent write into this file and modify the workspace. This leads to a bypass of CVE-2025-54130 which can lead to RCE by writing to the settings section. This issue is fixed in version 1.7. |
Cursor is a code editor built for programming with AI. In versions 1.7 and below, automatic loading of project-specific CLI configuration from the current working directory (<project>/.cursor/cli.json) could override certain global configurations in Cursor CLI. This allowed users running the CLI inside a malicious repository to be vulnerable to Remote Code Execution through a combination of permissive configuration (allowing shell commands) and prompt injection delivered via project-specific Rules (<project>/.cursor/rules/rule.mdc) or other mechanisms. The fix for this issue is currently available as a patch 2025.09.17-25b418f. As of October 3, 2025 there is no release version. |
Cursor is a code editor built for programming with AI. In versions 1.7 and below, a vulnerability in the way Cursor CLI Agent protects its sensitive files (i.e. */.cursor/cli.json) allows attackers to modify the content of the files through prompt injection, thus achieving remote code execution. A prompt injection can lead to full RCE through modifying sensitive files on case-insensitive filesystems. This issue is fixed in a commit, 25b418f, but has yet to be released as of October 3, 2025. |