| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Prevent integer overflow in hdr_first_de()
The "de_off" and "used" variables come from the disk so they both need to
check. The problem is that on 32bit systems if they're both greater than
UINT_MAX - 16 then the check does work as intended because of an integer
overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/9p: fix NULL pointer dereference on mkdir
When a 9p tree was mounted with option 'posixacl', parent directory had a
default ACL set for its subdirectories, e.g.:
setfacl -m default:group:simpsons:rwx parentdir
then creating a subdirectory crashed 9p client, as v9fs_fid_add() call in
function v9fs_vfs_mkdir_dotl() sets the passed 'fid' pointer to NULL
(since dafbe689736) even though the subsequent v9fs_set_create_acl() call
expects a valid non-NULL 'fid' pointer:
[ 37.273191] BUG: kernel NULL pointer dereference, address: 0000000000000000
...
[ 37.322338] Call Trace:
[ 37.323043] <TASK>
[ 37.323621] ? __die (arch/x86/kernel/dumpstack.c:421 arch/x86/kernel/dumpstack.c:434)
[ 37.324448] ? page_fault_oops (arch/x86/mm/fault.c:714)
[ 37.325532] ? search_module_extables (kernel/module/main.c:3733)
[ 37.326742] ? p9_client_walk (net/9p/client.c:1165) 9pnet
[ 37.328006] ? search_bpf_extables (kernel/bpf/core.c:804)
[ 37.329142] ? exc_page_fault (./arch/x86/include/asm/paravirt.h:686 arch/x86/mm/fault.c:1488 arch/x86/mm/fault.c:1538)
[ 37.330196] ? asm_exc_page_fault (./arch/x86/include/asm/idtentry.h:574)
[ 37.331330] ? p9_client_walk (net/9p/client.c:1165) 9pnet
[ 37.332562] ? v9fs_fid_xattr_get (fs/9p/xattr.c:30) 9p
[ 37.333824] v9fs_fid_xattr_set (fs/9p/fid.h:23 fs/9p/xattr.c:121) 9p
[ 37.335077] v9fs_set_acl (fs/9p/acl.c:276) 9p
[ 37.336112] v9fs_set_create_acl (fs/9p/acl.c:307) 9p
[ 37.337326] v9fs_vfs_mkdir_dotl (fs/9p/vfs_inode_dotl.c:411) 9p
[ 37.338590] vfs_mkdir (fs/namei.c:4313)
[ 37.339535] do_mkdirat (fs/namei.c:4336)
[ 37.340465] __x64_sys_mkdir (fs/namei.c:4354)
[ 37.341455] do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
[ 37.342447] entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
Fix this by simply swapping the sequence of these two calls in
v9fs_vfs_mkdir_dotl(), i.e. calling v9fs_set_create_acl() before
v9fs_fid_add(). |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: make sure ubq->canceling is set when queue is frozen
Now ublk driver depends on `ubq->canceling` for deciding if the request
can be dispatched via uring_cmd & io_uring_cmd_complete_in_task().
Once ubq->canceling is set, the uring_cmd can be done via ublk_cancel_cmd()
and io_uring_cmd_done().
So set ubq->canceling when queue is frozen, this way makes sure that the
flag can be observed from ublk_queue_rq() reliably, and avoids
use-after-free on uring_cmd. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix random stack corruption after get_block
When get_block is called with a buffer_head allocated on the stack, such
as do_mpage_readpage, stack corruption due to buffer_head UAF may occur in
the following race condition situation.
<CPU 0> <CPU 1>
mpage_read_folio
<<bh on stack>>
do_mpage_readpage
exfat_get_block
bh_read
__bh_read
get_bh(bh)
submit_bh
wait_on_buffer
...
end_buffer_read_sync
__end_buffer_read_notouch
unlock_buffer
<<keep going>>
...
...
...
...
<<bh is not valid out of mpage_read_folio>>
.
.
another_function
<<variable A on stack>>
put_bh(bh)
atomic_dec(bh->b_count)
* stack corruption here *
This patch returns -EAGAIN if a folio does not have buffers when bh_read
needs to be called. By doing this, the caller can fallback to functions
like block_read_full_folio(), create a buffer_head in the folio, and then
call get_block again.
Let's do not call bh_read() with on-stack buffer_head. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921: fix kernel panic due to null pointer dereference
Address a kernel panic caused by a null pointer dereference in the
`mt792x_rx_get_wcid` function. The issue arises because the `deflink` structure
is not properly initialized with the `sta` context. This patch ensures that the
`deflink` structure is correctly linked to the `sta` context, preventing the
null pointer dereference.
BUG: kernel NULL pointer dereference, address: 0000000000000400
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 0 UID: 0 PID: 470 Comm: mt76-usb-rx phy Not tainted 6.12.13-gentoo-dist #1
Hardware name: /AMD HUDSON-M1, BIOS 4.6.4 11/15/2011
RIP: 0010:mt792x_rx_get_wcid+0x48/0x140 [mt792x_lib]
RSP: 0018:ffffa147c055fd98 EFLAGS: 00010202
RAX: 0000000000000000 RBX: ffff8e9ecb652000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8e9ecb652000
RBP: 0000000000000685 R08: ffff8e9ec6570000 R09: 0000000000000000
R10: ffff8e9ecd2ca000 R11: ffff8e9f22a217c0 R12: 0000000038010119
R13: 0000000080843801 R14: ffff8e9ec6570000 R15: ffff8e9ecb652000
FS: 0000000000000000(0000) GS:ffff8e9f22a00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000400 CR3: 000000000d2ea000 CR4: 00000000000006f0
Call Trace:
<TASK>
? __die_body.cold+0x19/0x27
? page_fault_oops+0x15a/0x2f0
? search_module_extables+0x19/0x60
? search_bpf_extables+0x5f/0x80
? exc_page_fault+0x7e/0x180
? asm_exc_page_fault+0x26/0x30
? mt792x_rx_get_wcid+0x48/0x140 [mt792x_lib]
mt7921_queue_rx_skb+0x1c6/0xaa0 [mt7921_common]
mt76u_alloc_queues+0x784/0x810 [mt76_usb]
? __pfx___mt76_worker_fn+0x10/0x10 [mt76]
__mt76_worker_fn+0x4f/0x80 [mt76]
kthread+0xd2/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork+0x34/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/bwctrl: Fix NULL pointer dereference on bus number exhaustion
When BIOS neglects to assign bus numbers to PCI bridges, the kernel
attempts to correct that during PCI device enumeration. If it runs out
of bus numbers, no pci_bus is allocated and the "subordinate" pointer in
the bridge's pci_dev remains NULL.
The PCIe bandwidth controller erroneously does not check for a NULL
subordinate pointer and dereferences it on probe.
Bandwidth control of unusable devices below the bridge is of questionable
utility, so simply error out instead. This mirrors what PCIe hotplug does
since commit 62e4492c3063 ("PCI: Prevent NULL dereference during pciehp
probe").
The PCI core emits a message with KERN_INFO severity if it has run out of
bus numbers. PCIe hotplug emits an additional message with KERN_ERR
severity to inform the user that hotplug functionality is disabled at the
bridge. A similar message for bandwidth control does not seem merited,
given that its only purpose so far is to expose an up-to-date link speed
in sysfs and throttle the link speed on certain laptops with limited
Thermal Design Power. So error out silently.
User-visible messages:
pci 0000:16:02.0: bridge configuration invalid ([bus 00-00]), reconfiguring
[...]
pci_bus 0000:45: busn_res: [bus 45-74] end is updated to 74
pci 0000:16:02.0: devices behind bridge are unusable because [bus 45-74] cannot be assigned for them
[...]
pcieport 0000:16:02.0: pciehp: Hotplug bridge without secondary bus, ignoring
[...]
BUG: kernel NULL pointer dereference
RIP: pcie_update_link_speed
pcie_bwnotif_enable
pcie_bwnotif_probe
pcie_port_probe_service
really_probe |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix management of listener transports
Currently, when no active threads are running, a root user using nfsdctl
command can try to remove a particular listener from the list of previously
added ones, then start the server by increasing the number of threads,
it leads to the following problem:
[ 158.835354] refcount_t: addition on 0; use-after-free.
[ 158.835603] WARNING: CPU: 2 PID: 9145 at lib/refcount.c:25 refcount_warn_saturate+0x160/0x1a0
[ 158.836017] Modules linked in: rpcrdma rdma_cm iw_cm ib_cm ib_core nfsd auth_rpcgss nfs_acl lockd grace overlay isofs uinput snd_seq_dummy snd_hrtimer nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 rfkill ip_set nf_tables qrtr sunrpc vfat fat uvcvideo videobuf2_vmalloc videobuf2_memops uvc videobuf2_v4l2 videodev videobuf2_common snd_hda_codec_generic mc e1000e snd_hda_intel snd_intel_dspcfg snd_hda_codec snd_hda_core snd_hwdep snd_seq snd_seq_device snd_pcm snd_timer snd soundcore sg loop dm_multipath dm_mod nfnetlink vsock_loopback vmw_vsock_virtio_transport_common vmw_vsock_vmci_transport vmw_vmci vsock xfs libcrc32c crct10dif_ce ghash_ce vmwgfx sha2_ce sha256_arm64 sr_mod sha1_ce cdrom nvme drm_client_lib drm_ttm_helper ttm nvme_core drm_kms_helper nvme_auth drm fuse
[ 158.840093] CPU: 2 UID: 0 PID: 9145 Comm: nfsd Kdump: loaded Tainted: G B W 6.13.0-rc6+ #7
[ 158.840624] Tainted: [B]=BAD_PAGE, [W]=WARN
[ 158.840802] Hardware name: VMware, Inc. VMware20,1/VBSA, BIOS VMW201.00V.24006586.BA64.2406042154 06/04/2024
[ 158.841220] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 158.841563] pc : refcount_warn_saturate+0x160/0x1a0
[ 158.841780] lr : refcount_warn_saturate+0x160/0x1a0
[ 158.842000] sp : ffff800089be7d80
[ 158.842147] x29: ffff800089be7d80 x28: ffff00008e68c148 x27: ffff00008e68c148
[ 158.842492] x26: ffff0002e3b5c000 x25: ffff600011cd1829 x24: ffff00008653c010
[ 158.842832] x23: ffff00008653c000 x22: 1fffe00011cd1829 x21: ffff00008653c028
[ 158.843175] x20: 0000000000000002 x19: ffff00008653c010 x18: 0000000000000000
[ 158.843505] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
[ 158.843836] x14: 0000000000000000 x13: 0000000000000001 x12: ffff600050a26493
[ 158.844143] x11: 1fffe00050a26492 x10: ffff600050a26492 x9 : dfff800000000000
[ 158.844475] x8 : 00009fffaf5d9b6e x7 : ffff000285132493 x6 : 0000000000000001
[ 158.844823] x5 : ffff000285132490 x4 : ffff600050a26493 x3 : ffff8000805e72bc
[ 158.845174] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff000098588000
[ 158.845528] Call trace:
[ 158.845658] refcount_warn_saturate+0x160/0x1a0 (P)
[ 158.845894] svc_recv+0x58c/0x680 [sunrpc]
[ 158.846183] nfsd+0x1fc/0x348 [nfsd]
[ 158.846390] kthread+0x274/0x2f8
[ 158.846546] ret_from_fork+0x10/0x20
[ 158.846714] ---[ end trace 0000000000000000 ]---
nfsd_nl_listener_set_doit() would manipulate the list of transports of
server's sv_permsocks and close the specified listener but the other
list of transports (server's sp_xprts list) would not be changed leading
to the problem above.
Instead, determined if the nfsdctl is trying to remove a listener, in
which case, delete all the existing listener transports and re-create
all-but-the-removed ones. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "arm64: dts: qcom: sdm845: Affirm IDR0.CCTW on apps_smmu"
There are reports that the pagetable walker cache coherency is not a
given across the spectrum of SDM845/850 devices, leading to lock-ups
and resets. It works fine on some devices (like the Dragonboard 845c,
but not so much on the Lenovo Yoga C630).
This unfortunately looks like a fluke in firmware development, where
likely somewhere in the vast hypervisor stack, a change to accommodate
for this was only introduced after the initial software release (which
often serves as a baseline for products).
Revert the change to avoid additional guesswork around crashes.
This reverts commit 6b31a9744b8726c69bb0af290f8475a368a4b805. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: dummy: force synchronous probing
Sometimes I get a NULL pointer dereference at boot time in kobject_get()
with the following call stack:
anatop_regulator_probe()
devm_regulator_register()
regulator_register()
regulator_resolve_supply()
kobject_get()
By placing some extra BUG_ON() statements I could verify that this is
raised because probing of the 'dummy' regulator driver is not completed
('dummy_regulator_rdev' is still NULL).
In the JTAG debugger I can see that dummy_regulator_probe() and
anatop_regulator_probe() can be run by different kernel threads
(kworker/u4:*). I haven't further investigated whether this can be
changed or if there are other possibilities to force synchronization
between these two probe routines. On the other hand I don't expect much
boot time penalty by probing the 'dummy' regulator synchronously. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: am65-cpsw: Fix NAPI registration sequence
Registering the interrupts for TX or RX DMA Channels prior to registering
their respective NAPI callbacks can result in a NULL pointer dereference.
This is seen in practice as a random occurrence since it depends on the
randomness associated with the generation of traffic by Linux and the
reception of traffic from the wire. |
| In the Linux kernel, the following vulnerability has been resolved:
can: ucan: fix out of bound read in strscpy() source
Commit 7fdaf8966aae ("can: ucan: use strscpy() to instead of strncpy()")
unintentionally introduced a one byte out of bound read on strscpy()'s
source argument (which is kind of ironic knowing that strscpy() is meant
to be a more secure alternative :)).
Let's consider below buffers:
dest[len + 1]; /* will be NUL terminated */
src[len]; /* may not be NUL terminated */
When doing:
strncpy(dest, src, len);
dest[len] = '\0';
strncpy() will read up to len bytes from src.
On the other hand:
strscpy(dest, src, len + 1);
will read up to len + 1 bytes from src, that is to say, an out of bound
read of one byte will occur on src if it is not NUL terminated. Note
that the src[len] byte is never copied, but strscpy() still needs to
read it to check whether a truncation occurred or not.
This exact pattern happened in ucan.
The root cause is that the source is not NUL terminated. Instead of
doing a copy in a local buffer, directly NUL terminate it as soon as
usb_control_msg() returns. With this, the local firmware_str[] variable
can be removed.
On top of this do a couple refactors:
- ucan_ctl_payload->raw is only used for the firmware string, so
rename it to ucan_ctl_payload->fw_str and change its type from u8 to
char.
- ucan_device_request_in() is only used to retrieve the firmware
string, so rename it to ucan_get_fw_str() and refactor it to make it
directly handle all the string termination logic. |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Call `invalidate_cache` only if implemented
Many filesystems such as NFS and Ceph do not implement the
`invalidate_cache` method. On those filesystems, if writing to the
cache (`NETFS_WRITE_TO_CACHE`) fails for some reason, the kernel
crashes like this:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
PGD 0 P4D 0
Oops: Oops: 0010 [#1] SMP PTI
CPU: 9 UID: 0 PID: 3380 Comm: kworker/u193:11 Not tainted 6.13.3-cm4all1-hp #437
Hardware name: HP ProLiant DL380 Gen9/ProLiant DL380 Gen9, BIOS P89 10/17/2018
Workqueue: events_unbound netfs_write_collection_worker
RIP: 0010:0x0
Code: Unable to access opcode bytes at 0xffffffffffffffd6.
RSP: 0018:ffff9b86e2ca7dc0 EFLAGS: 00010202
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 7fffffffffffffff
RDX: 0000000000000001 RSI: ffff89259d576a18 RDI: ffff89259d576900
RBP: ffff89259d5769b0 R08: ffff9b86e2ca7d28 R09: 0000000000000002
R10: ffff89258ceaca80 R11: 0000000000000001 R12: 0000000000000020
R13: ffff893d158b9338 R14: ffff89259d576900 R15: ffff89259d5769b0
FS: 0000000000000000(0000) GS:ffff893c9fa40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffffffffd6 CR3: 000000054442e003 CR4: 00000000001706f0
Call Trace:
<TASK>
? __die+0x1f/0x60
? page_fault_oops+0x15c/0x460
? try_to_wake_up+0x2d2/0x530
? exc_page_fault+0x5e/0x100
? asm_exc_page_fault+0x22/0x30
netfs_write_collection_worker+0xe9f/0x12b0
? xs_poll_check_readable+0x3f/0x80
? xs_stream_data_receive_workfn+0x8d/0x110
process_one_work+0x134/0x2d0
worker_thread+0x299/0x3a0
? __pfx_worker_thread+0x10/0x10
kthread+0xba/0xe0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Modules linked in:
CR2: 0000000000000000
This patch adds the missing `NULL` check. |
| In the Linux kernel, the following vulnerability has been resolved:
accel/qaic: Fix integer overflow in qaic_validate_req()
These are u64 variables that come from the user via
qaic_attach_slice_bo_ioctl(). Use check_add_overflow() to ensure that
the math doesn't have an integer wrapping bug. |
| In the Linux kernel, the following vulnerability has been resolved:
vmxnet3: Fix packet corruption in vmxnet3_xdp_xmit_frame
Andrew and Nikolay reported connectivity issues with Cilium's service
load-balancing in case of vmxnet3.
If a BPF program for native XDP adds an encapsulation header such as
IPIP and transmits the packet out the same interface, then in case
of vmxnet3 a corrupted packet is being sent and subsequently dropped
on the path.
vmxnet3_xdp_xmit_frame() which is called e.g. via vmxnet3_run_xdp()
through vmxnet3_xdp_xmit_back() calculates an incorrect DMA address:
page = virt_to_page(xdpf->data);
tbi->dma_addr = page_pool_get_dma_addr(page) +
VMXNET3_XDP_HEADROOM;
dma_sync_single_for_device(&adapter->pdev->dev,
tbi->dma_addr, buf_size,
DMA_TO_DEVICE);
The above assumes a fixed offset (VMXNET3_XDP_HEADROOM), but the XDP
BPF program could have moved xdp->data. While the passed buf_size is
correct (xdpf->len), the dma_addr needs to have a dynamic offset which
can be calculated as xdpf->data - (void *)xdpf, that is, xdp->data -
xdp->data_hard_start. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix RCU stall while reaping monitor destination ring
While processing the monitor destination ring, MSDUs are reaped from the
link descriptor based on the corresponding buf_id.
However, sometimes the driver cannot obtain a valid buffer corresponding
to the buf_id received from the hardware. This causes an infinite loop
in the destination processing, resulting in a kernel crash.
kernel log:
ath11k_pci 0000:58:00.0: data msdu_pop: invalid buf_id 309
ath11k_pci 0000:58:00.0: data dp_rx_monitor_link_desc_return failed
ath11k_pci 0000:58:00.0: data msdu_pop: invalid buf_id 309
ath11k_pci 0000:58:00.0: data dp_rx_monitor_link_desc_return failed
Fix this by skipping the problematic buf_id and reaping the next entry,
replacing the break with the next MSDU processing.
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.30
Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
capabilities: fix potential memleak on error path from vfs_getxattr_alloc()
In cap_inode_getsecurity(), we will use vfs_getxattr_alloc() to
complete the memory allocation of tmpbuf, if we have completed
the memory allocation of tmpbuf, but failed to call handler->get(...),
there will be a memleak in below logic:
|-- ret = (int)vfs_getxattr_alloc(mnt_userns, ...)
| /* ^^^ alloc for tmpbuf */
|-- value = krealloc(*xattr_value, error + 1, flags)
| /* ^^^ alloc memory */
|-- error = handler->get(handler, ...)
| /* error! */
|-- *xattr_value = value
| /* xattr_value is &tmpbuf (memory leak!) */
So we will try to free(tmpbuf) after vfs_getxattr_alloc() fails to fix it.
[PM: subject line and backtrace tweaks] |
| In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Check for NULL cpu_buffer in ring_buffer_wake_waiters()
On some machines the number of listed CPUs may be bigger than the actual
CPUs that exist. The tracing subsystem allocates a per_cpu directory with
access to the per CPU ring buffer via a cpuX file. But to save space, the
ring buffer will only allocate buffers for online CPUs, even though the
CPU array will be as big as the nr_cpu_ids.
With the addition of waking waiters on the ring buffer when closing the
file, the ring_buffer_wake_waiters() now needs to make sure that the
buffer is allocated (with the irq_work allocated with it) before trying to
wake waiters, as it will cause a NULL pointer dereference.
While debugging this, I added a NULL check for the buffer itself (which is
OK to do), and also NULL pointer checks against buffer->buffers (which is
not fine, and will WARN) as well as making sure the CPU number passed in
is within the nr_cpu_ids (which is also not fine if it isn't).
Bugzilla: https://bugzilla.opensuse.org/show_bug.cgi?id=1204705 |
| In the Linux kernel, the following vulnerability has been resolved:
media: meson: vdec: fix possible refcount leak in vdec_probe()
v4l2_device_unregister need to be called to put the refcount got by
v4l2_device_register when vdec_probe fails or vdec_remove is called. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: APEI: Fix integer overflow in ghes_estatus_pool_init()
Change num_ghes from int to unsigned int, preventing an overflow
and causing subsequent vmalloc() to fail.
The overflow happens in ghes_estatus_pool_init() when calculating
len during execution of the statement below as both multiplication
operands here are signed int:
len += (num_ghes * GHES_ESOURCE_PREALLOC_MAX_SIZE);
The following call trace is observed because of this bug:
[ 9.317108] swapper/0: vmalloc error: size 18446744071562596352, exceeds total pages, mode:0xcc0(GFP_KERNEL), nodemask=(null),cpuset=/,mems_allowed=0-1
[ 9.317131] Call Trace:
[ 9.317134] <TASK>
[ 9.317137] dump_stack_lvl+0x49/0x5f
[ 9.317145] dump_stack+0x10/0x12
[ 9.317146] warn_alloc.cold+0x7b/0xdf
[ 9.317150] ? __device_attach+0x16a/0x1b0
[ 9.317155] __vmalloc_node_range+0x702/0x740
[ 9.317160] ? device_add+0x17f/0x920
[ 9.317164] ? dev_set_name+0x53/0x70
[ 9.317166] ? platform_device_add+0xf9/0x240
[ 9.317168] __vmalloc_node+0x49/0x50
[ 9.317170] ? ghes_estatus_pool_init+0x43/0xa0
[ 9.317176] vmalloc+0x21/0x30
[ 9.317177] ghes_estatus_pool_init+0x43/0xa0
[ 9.317179] acpi_hest_init+0x129/0x19c
[ 9.317185] acpi_init+0x434/0x4a4
[ 9.317188] ? acpi_sleep_proc_init+0x2a/0x2a
[ 9.317190] do_one_initcall+0x48/0x200
[ 9.317195] kernel_init_freeable+0x221/0x284
[ 9.317200] ? rest_init+0xe0/0xe0
[ 9.317204] kernel_init+0x1a/0x130
[ 9.317205] ret_from_fork+0x22/0x30
[ 9.317208] </TASK>
[ rjw: Subject and changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: fix memory leak in query_regdb_file()
In the function query_regdb_file() the alpha2 parameter is duplicated
using kmemdup() and subsequently freed in regdb_fw_cb(). However,
request_firmware_nowait() can fail without calling regdb_fw_cb() and
thus leak memory. |