| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: macsec: Fix offload support for NETDEV_UNREGISTER event
Current macsec netdev notify handler handles NETDEV_UNREGISTER event by
releasing relevant SW resources only, this causes resources leak in case
of macsec HW offload, as the underlay driver was not notified to clean
it's macsec offload resources.
Fix by calling the underlay driver to clean it's relevant resources
by moving offload handling from macsec_dellink() to macsec_common_dellink()
when handling NETDEV_UNREGISTER event. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
hv_netvsc: Don't free decrypted memory
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
The netvsc driver could free decrypted/shared pages if
set_memory_decrypted() fails. Check the decrypted field in the gpadl
to decide whether to free the memory. |
| In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Don't free ring buffers that couldn't be re-encrypted
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
The VMBus ring buffer code could free decrypted/shared pages if
set_memory_decrypted() fails. Check the decrypted field in the struct
vmbus_gpadl for the ring buffers to decide whether to free the memory. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix kernel crash when devlink reload during initialization
The devlink reload process will access the hardware resources,
but the register operation is done before the hardware is initialized.
So, processing the devlink reload during initialization may lead to kernel
crash.
This patch fixes this by registering the devlink after
hardware initialization. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: qca: add missing firmware sanity checks
Add the missing sanity checks when parsing the firmware files before
downloading them to avoid accessing and corrupting memory beyond the
vmalloced buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: sdhci-msm: pervent access to suspended controller
Generic sdhci code registers LED device and uses host->runtime_suspended
flag to protect access to it. The sdhci-msm driver doesn't set this flag,
which causes a crash when LED is accessed while controller is runtime
suspended. Fix this by setting the flag correctly. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: fixes a random hang in S4 for SMU v13.0.4/11
While doing multiple S4 stress tests, GC/RLC/PMFW get into
an invalid state resulting into hard hangs.
Adding a GFX reset as workaround just before sending the
MP1_UNLOAD message avoids this failure. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Disable idle reallow as part of command/gpint execution
[Why]
Workaroud for a race condition where DMCUB is in the process of
committing to IPS1 during the handshake causing us to miss the
transition into IPS2 and touch the INBOX1 RPTR causing a HW hang.
[How]
Disable the reallow to ensure that we have enough of a gap between entry
and exit and we're not seeing back-to-back wake_and_executes. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix kernel crash when devlink reload during pf initialization
The devlink reload process will access the hardware resources,
but the register operation is done before the hardware is initialized.
So, processing the devlink reload during initialization may lead to kernel
crash. This patch fixes this by taking devl_lock during initialization. |
| In the Linux kernel, the following vulnerability has been resolved:
nouveau/uvmm: fix addr/range calcs for remap operations
dEQP-VK.sparse_resources.image_rebind.2d_array.r64i.128_128_8
was causing a remap operation like the below.
op_remap: prev: 0000003fffed0000 00000000000f0000 00000000a5abd18a 0000000000000000
op_remap: next:
op_remap: unmap: 0000003fffed0000 0000000000100000 0
op_map: map: 0000003ffffc0000 0000000000010000 000000005b1ba33c 00000000000e0000
This was resulting in an unmap operation from 0x3fffed0000+0xf0000, 0x100000
which was corrupting the pagetables and oopsing the kernel.
Fixes the prev + unmap range calcs to use start/end and map back to addr/range. |
| IBM OpenPages 9.0 could allow an authenticated user to obtain sensitive information such as configurations that should only be available to privileged users. |
| IBM Sterling B2B Integrator Standard Edition 6.0.0.0 through 6.1.2.5 and 6.2.0.0 through 6.2.0.2 is vulnerable to stored cross-site scripting. This vulnerability allows users to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: ops: Reject out of bounds values in snd_soc_put_volsw()
We don't currently validate that the values being set are within the range
we advertised to userspace as being valid, do so and reject any values
that are out of range. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: LAPIC: Also cancel preemption timer during SET_LAPIC
The below warning is splatting during guest reboot.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1931 at arch/x86/kvm/x86.c:10322 kvm_arch_vcpu_ioctl_run+0x874/0x880 [kvm]
CPU: 0 PID: 1931 Comm: qemu-system-x86 Tainted: G I 5.17.0-rc1+ #5
RIP: 0010:kvm_arch_vcpu_ioctl_run+0x874/0x880 [kvm]
Call Trace:
<TASK>
kvm_vcpu_ioctl+0x279/0x710 [kvm]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7fd39797350b
This can be triggered by not exposing tsc-deadline mode and doing a reboot in
the guest. The lapic_shutdown() function which is called in sys_reboot path
will not disarm the flying timer, it just masks LVTT. lapic_shutdown() clears
APIC state w/ LVT_MASKED and timer-mode bit is 0, this can trigger timer-mode
switch between tsc-deadline and oneshot/periodic, which can result in preemption
timer be cancelled in apic_update_lvtt(). However, We can't depend on this when
not exposing tsc-deadline mode and oneshot/periodic modes emulated by preemption
timer. Qemu will synchronise states around reset, let's cancel preemption timer
under KVM_SET_LAPIC. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: properly put ceph_string reference after async create attempt
The reference acquired by try_prep_async_create is currently leaked.
Ensure we put it. |
| In the Linux kernel, the following vulnerability has been resolved:
efi: runtime: avoid EFIv2 runtime services on Apple x86 machines
Aditya reports [0] that his recent MacbookPro crashes in the firmware
when using the variable services at runtime. The culprit appears to be a
call to QueryVariableInfo(), which we did not use to call on Apple x86
machines in the past as they only upgraded from EFI v1.10 to EFI v2.40
firmware fairly recently, and QueryVariableInfo() (along with
UpdateCapsule() et al) was added in EFI v2.00.
The only runtime service introduced in EFI v2.00 that we actually use in
Linux is QueryVariableInfo(), as the capsule based ones are optional,
generally not used at runtime (all the LVFS/fwupd firmware update
infrastructure uses helper EFI programs that invoke capsule update at
boot time, not runtime), and not implemented by Apple machines in the
first place. QueryVariableInfo() is used to 'safely' set variables,
i.e., only when there is enough space. This prevents machines with buggy
firmwares from corrupting their NVRAMs when they run out of space.
Given that Apple machines have been using EFI v1.10 services only for
the longest time (the EFI v2.0 spec was released in 2006, and Linux
support for the newly introduced runtime services was added in 2011, but
the MacbookPro12,1 released in 2015 still claims to be EFI v1.10 only),
let's avoid the EFI v2.0 ones on all Apple x86 machines.
[0] https://lore.kernel.org/all/6D757C75-65B1-468B-842D-10410081A8E4@live.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
igb: Fix string truncation warnings in igb_set_fw_version
Commit 1978d3ead82c ("intel: fix string truncation warnings")
fixes '-Wformat-truncation=' warnings in igb_main.c by using kasprintf.
drivers/net/ethernet/intel/igb/igb_main.c:3092:53: warning:‘%d’ directive output may be truncated writing between 1 and 5 bytes into a region of size between 1 and 13 [-Wformat-truncation=]
3092 | "%d.%d, 0x%08x, %d.%d.%d",
| ^~
drivers/net/ethernet/intel/igb/igb_main.c:3092:34: note:directive argument in the range [0, 65535]
3092 | "%d.%d, 0x%08x, %d.%d.%d",
| ^~~~~~~~~~~~~~~~~~~~~~~~~
drivers/net/ethernet/intel/igb/igb_main.c:3092:34: note:directive argument in the range [0, 65535]
drivers/net/ethernet/intel/igb/igb_main.c:3090:25: note:‘snprintf’ output between 23 and 43 bytes into a destination of size 32
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure.
Fix this warning by using a larger space for adapter->fw_version,
and then fall back and continue to use snprintf. |
| NVIDIA Triton Inference Server contains a vulnerability where a user may cause an out-of-bounds read issue by releasing a shared memory region while it is in use. A successful exploit of this vulnerability may lead to denial of service. |