| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
s390/cpum_sf: Fix and protect memory allocation of SDBs with mutex
Reservation of the PMU hardware is done at first event creation
and is protected by a pair of mutex_lock() and mutex_unlock().
After reservation of the PMU hardware the memory
required for the PMUs the event is to be installed on is
allocated by allocate_buffers() and alloc_sampling_buffer().
This done outside of the mutex protection.
Without mutex protection two or more concurrent invocations of
perf_event_init() may run in parallel.
This can lead to allocation of Sample Data Blocks (SDBs)
multiple times for the same PMU.
Prevent this and protect memory allocation of SDBs by
mutex. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/core: fix new damon_target objects leaks on damon_commit_targets()
Patch series "mm/damon/core: fix memory leaks and ignored inputs from
damon_commit_ctx()".
Due to two bugs in damon_commit_targets() and damon_commit_schemes(),
which are called from damon_commit_ctx(), some user inputs can be ignored,
and some mmeory objects can be leaked. Fix those.
Note that only DAMON sysfs interface users are affected. Other DAMON core
API user modules that more focused more on simple and dedicated production
usages, including DAMON_RECLAIM and DAMON_LRU_SORT are not using the buggy
function in the way, so not affected.
This patch (of 2):
When new DAMON targets are added via damon_commit_targets(), the newly
created targets are not deallocated when updating the internal data
(damon_commit_target()) is failed. Worse yet, even if the setup is
successfully done, the new target is not linked to the context. Hence,
the new targets are always leaked regardless of the internal data setup
failure. Fix the leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/kmemleak: fix sleeping function called from invalid context at print message
Address a bug in the kernel that triggers a "sleeping function called from
invalid context" warning when /sys/kernel/debug/kmemleak is printed under
specific conditions:
- CONFIG_PREEMPT_RT=y
- Set SELinux as the LSM for the system
- Set kptr_restrict to 1
- kmemleak buffer contains at least one item
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 136, name: cat
preempt_count: 1, expected: 0
RCU nest depth: 2, expected: 2
6 locks held by cat/136:
#0: ffff32e64bcbf950 (&p->lock){+.+.}-{3:3}, at: seq_read_iter+0xb8/0xe30
#1: ffffafe6aaa9dea0 (scan_mutex){+.+.}-{3:3}, at: kmemleak_seq_start+0x34/0x128
#3: ffff32e6546b1cd0 (&object->lock){....}-{2:2}, at: kmemleak_seq_show+0x3c/0x1e0
#4: ffffafe6aa8d8560 (rcu_read_lock){....}-{1:2}, at: has_ns_capability_noaudit+0x8/0x1b0
#5: ffffafe6aabbc0f8 (notif_lock){+.+.}-{2:2}, at: avc_compute_av+0xc4/0x3d0
irq event stamp: 136660
hardirqs last enabled at (136659): [<ffffafe6a80fd7a0>] _raw_spin_unlock_irqrestore+0xa8/0xd8
hardirqs last disabled at (136660): [<ffffafe6a80fd85c>] _raw_spin_lock_irqsave+0x8c/0xb0
softirqs last enabled at (0): [<ffffafe6a5d50b28>] copy_process+0x11d8/0x3df8
softirqs last disabled at (0): [<0000000000000000>] 0x0
Preemption disabled at:
[<ffffafe6a6598a4c>] kmemleak_seq_show+0x3c/0x1e0
CPU: 1 UID: 0 PID: 136 Comm: cat Tainted: G E 6.11.0-rt7+ #34
Tainted: [E]=UNSIGNED_MODULE
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0xa0/0x128
show_stack+0x1c/0x30
dump_stack_lvl+0xe8/0x198
dump_stack+0x18/0x20
rt_spin_lock+0x8c/0x1a8
avc_perm_nonode+0xa0/0x150
cred_has_capability.isra.0+0x118/0x218
selinux_capable+0x50/0x80
security_capable+0x7c/0xd0
has_ns_capability_noaudit+0x94/0x1b0
has_capability_noaudit+0x20/0x30
restricted_pointer+0x21c/0x4b0
pointer+0x298/0x760
vsnprintf+0x330/0xf70
seq_printf+0x178/0x218
print_unreferenced+0x1a4/0x2d0
kmemleak_seq_show+0xd0/0x1e0
seq_read_iter+0x354/0xe30
seq_read+0x250/0x378
full_proxy_read+0xd8/0x148
vfs_read+0x190/0x918
ksys_read+0xf0/0x1e0
__arm64_sys_read+0x70/0xa8
invoke_syscall.constprop.0+0xd4/0x1d8
el0_svc+0x50/0x158
el0t_64_sync+0x17c/0x180
%pS and %pK, in the same back trace line, are redundant, and %pS can void
%pK service in certain contexts.
%pS alone already provides the necessary information, and if it cannot
resolve the symbol, it falls back to printing the raw address voiding
the original intent behind the %pK.
Additionally, %pK requires a privilege check CAP_SYSLOG enforced through
the LSM, which can trigger a "sleeping function called from invalid
context" warning under RT_PREEMPT kernels when the check occurs in an
atomic context. This issue may also affect other LSMs.
This change avoids the unnecessary privilege check and resolves the
sleeping function warning without any loss of information. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: zlib: fix avail_in bytes for s390 zlib HW compression path
Since the input data length passed to zlib_compress_folios() can be
arbitrary, always setting strm.avail_in to a multiple of PAGE_SIZE may
cause read-in bytes to exceed the input range. Currently this triggers
an assert in btrfs_compress_folios() on the debug kernel (see below).
Fix strm.avail_in calculation for S390 hardware acceleration path.
assertion failed: *total_in <= orig_len, in fs/btrfs/compression.c:1041
------------[ cut here ]------------
kernel BUG at fs/btrfs/compression.c:1041!
monitor event: 0040 ilc:2 [#1] PREEMPT SMP
CPU: 16 UID: 0 PID: 325 Comm: kworker/u273:3 Not tainted 6.13.0-20241204.rc1.git6.fae3b21430ca.300.fc41.s390x+debug #1
Hardware name: IBM 3931 A01 703 (z/VM 7.4.0)
Workqueue: btrfs-delalloc btrfs_work_helper
Krnl PSW : 0704d00180000000 0000021761df6538 (btrfs_compress_folios+0x198/0x1a0)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3
Krnl GPRS: 0000000080000000 0000000000000001 0000000000000047 0000000000000000
0000000000000006 ffffff01757bb000 000001976232fcc0 000000000000130c
000001976232fcd0 000001976232fcc8 00000118ff4a0e30 0000000000000001
00000111821ab400 0000011100000000 0000021761df6534 000001976232fb58
Krnl Code: 0000021761df6528: c020006f5ef4 larl %r2,0000021762be2310
0000021761df652e: c0e5ffbd09d5 brasl %r14,00000217615978d8
#0000021761df6534: af000000 mc 0,0
>0000021761df6538: 0707 bcr 0,%r7
0000021761df653a: 0707 bcr 0,%r7
0000021761df653c: 0707 bcr 0,%r7
0000021761df653e: 0707 bcr 0,%r7
0000021761df6540: c004004bb7ec brcl 0,000002176276d518
Call Trace:
[<0000021761df6538>] btrfs_compress_folios+0x198/0x1a0
([<0000021761df6534>] btrfs_compress_folios+0x194/0x1a0)
[<0000021761d97788>] compress_file_range+0x3b8/0x6d0
[<0000021761dcee7c>] btrfs_work_helper+0x10c/0x160
[<0000021761645760>] process_one_work+0x2b0/0x5d0
[<000002176164637e>] worker_thread+0x20e/0x3e0
[<000002176165221a>] kthread+0x15a/0x170
[<00000217615b859c>] __ret_from_fork+0x3c/0x60
[<00000217626e72d2>] ret_from_fork+0xa/0x38
INFO: lockdep is turned off.
Last Breaking-Event-Address:
[<0000021761597924>] _printk+0x4c/0x58
Kernel panic - not syncing: Fatal exception: panic_on_oops |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Add a lock when accessing the buddy trim function
When running YouTube videos and Steam games simultaneously,
the tester found a system hang / race condition issue with
the multi-display configuration setting. Adding a lock to
the buddy allocator's trim function would be the solution.
<log snip>
[ 7197.250436] general protection fault, probably for non-canonical address 0xdead000000000108
[ 7197.250447] RIP: 0010:__alloc_range+0x8b/0x340 [amddrm_buddy]
[ 7197.250470] Call Trace:
[ 7197.250472] <TASK>
[ 7197.250475] ? show_regs+0x6d/0x80
[ 7197.250481] ? die_addr+0x37/0xa0
[ 7197.250483] ? exc_general_protection+0x1db/0x480
[ 7197.250488] ? drm_suballoc_new+0x13c/0x93d [drm_suballoc_helper]
[ 7197.250493] ? asm_exc_general_protection+0x27/0x30
[ 7197.250498] ? __alloc_range+0x8b/0x340 [amddrm_buddy]
[ 7197.250501] ? __alloc_range+0x109/0x340 [amddrm_buddy]
[ 7197.250506] amddrm_buddy_block_trim+0x1b5/0x260 [amddrm_buddy]
[ 7197.250511] amdgpu_vram_mgr_new+0x4f5/0x590 [amdgpu]
[ 7197.250682] amdttm_resource_alloc+0x46/0xb0 [amdttm]
[ 7197.250689] ttm_bo_alloc_resource+0xe4/0x370 [amdttm]
[ 7197.250696] amdttm_bo_validate+0x9d/0x180 [amdttm]
[ 7197.250701] amdgpu_bo_pin+0x15a/0x2f0 [amdgpu]
[ 7197.250831] amdgpu_dm_plane_helper_prepare_fb+0xb2/0x360 [amdgpu]
[ 7197.251025] ? try_wait_for_completion+0x59/0x70
[ 7197.251030] drm_atomic_helper_prepare_planes.part.0+0x2f/0x1e0
[ 7197.251035] drm_atomic_helper_prepare_planes+0x5d/0x70
[ 7197.251037] drm_atomic_helper_commit+0x84/0x160
[ 7197.251040] drm_atomic_nonblocking_commit+0x59/0x70
[ 7197.251043] drm_mode_atomic_ioctl+0x720/0x850
[ 7197.251047] ? __pfx_drm_mode_atomic_ioctl+0x10/0x10
[ 7197.251049] drm_ioctl_kernel+0xb9/0x120
[ 7197.251053] ? srso_alias_return_thunk+0x5/0xfbef5
[ 7197.251056] drm_ioctl+0x2d4/0x550
[ 7197.251058] ? __pfx_drm_mode_atomic_ioctl+0x10/0x10
[ 7197.251063] amdgpu_drm_ioctl+0x4e/0x90 [amdgpu]
[ 7197.251186] __x64_sys_ioctl+0xa0/0xf0
[ 7197.251190] x64_sys_call+0x143b/0x25c0
[ 7197.251193] do_syscall_64+0x7f/0x180
[ 7197.251197] ? srso_alias_return_thunk+0x5/0xfbef5
[ 7197.251199] ? amdgpu_display_user_framebuffer_create+0x215/0x320 [amdgpu]
[ 7197.251329] ? drm_internal_framebuffer_create+0xb7/0x1a0
[ 7197.251332] ? srso_alias_return_thunk+0x5/0xfbef5
(cherry picked from commit 3318ba94e56b9183d0304577c74b33b6b01ce516) |
| In the Linux kernel, the following vulnerability has been resolved:
ovl: support encoding fid from inode with no alias
Dmitry Safonov reported that a WARN_ON() assertion can be trigered by
userspace when calling inotify_show_fdinfo() for an overlayfs watched
inode, whose dentry aliases were discarded with drop_caches.
The WARN_ON() assertion in inotify_show_fdinfo() was removed, because
it is possible for encoding file handle to fail for other reason, but
the impact of failing to encode an overlayfs file handle goes beyond
this assertion.
As shown in the LTP test case mentioned in the link below, failure to
encode an overlayfs file handle from a non-aliased inode also leads to
failure to report an fid with FAN_DELETE_SELF fanotify events.
As Dmitry notes in his analyzis of the problem, ovl_encode_fh() fails
if it cannot find an alias for the inode, but this failure can be fixed.
ovl_encode_fh() seldom uses the alias and in the case of non-decodable
file handles, as is often the case with fanotify fid info,
ovl_encode_fh() never needs to use the alias to encode a file handle.
Defer finding an alias until it is actually needed so ovl_encode_fh()
will not fail in the common case of FAN_DELETE_SELF fanotify events. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix hang during unmount when stopping a space reclaim worker
Often when running generic/562 from fstests we can hang during unmount,
resulting in a trace like this:
Sep 07 11:52:00 debian9 unknown: run fstests generic/562 at 2022-09-07 11:52:00
Sep 07 11:55:32 debian9 kernel: INFO: task umount:49438 blocked for more than 120 seconds.
Sep 07 11:55:32 debian9 kernel: Not tainted 6.0.0-rc2-btrfs-next-122 #1
Sep 07 11:55:32 debian9 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
Sep 07 11:55:32 debian9 kernel: task:umount state:D stack: 0 pid:49438 ppid: 25683 flags:0x00004000
Sep 07 11:55:32 debian9 kernel: Call Trace:
Sep 07 11:55:32 debian9 kernel: <TASK>
Sep 07 11:55:32 debian9 kernel: __schedule+0x3c8/0xec0
Sep 07 11:55:32 debian9 kernel: ? rcu_read_lock_sched_held+0x12/0x70
Sep 07 11:55:32 debian9 kernel: schedule+0x5d/0xf0
Sep 07 11:55:32 debian9 kernel: schedule_timeout+0xf1/0x130
Sep 07 11:55:32 debian9 kernel: ? lock_release+0x224/0x4a0
Sep 07 11:55:32 debian9 kernel: ? lock_acquired+0x1a0/0x420
Sep 07 11:55:32 debian9 kernel: ? trace_hardirqs_on+0x2c/0xd0
Sep 07 11:55:32 debian9 kernel: __wait_for_common+0xac/0x200
Sep 07 11:55:32 debian9 kernel: ? usleep_range_state+0xb0/0xb0
Sep 07 11:55:32 debian9 kernel: __flush_work+0x26d/0x530
Sep 07 11:55:32 debian9 kernel: ? flush_workqueue_prep_pwqs+0x140/0x140
Sep 07 11:55:32 debian9 kernel: ? trace_clock_local+0xc/0x30
Sep 07 11:55:32 debian9 kernel: __cancel_work_timer+0x11f/0x1b0
Sep 07 11:55:32 debian9 kernel: ? close_ctree+0x12b/0x5b3 [btrfs]
Sep 07 11:55:32 debian9 kernel: ? __trace_bputs+0x10b/0x170
Sep 07 11:55:32 debian9 kernel: close_ctree+0x152/0x5b3 [btrfs]
Sep 07 11:55:32 debian9 kernel: ? evict_inodes+0x166/0x1c0
Sep 07 11:55:32 debian9 kernel: generic_shutdown_super+0x71/0x120
Sep 07 11:55:32 debian9 kernel: kill_anon_super+0x14/0x30
Sep 07 11:55:32 debian9 kernel: btrfs_kill_super+0x12/0x20 [btrfs]
Sep 07 11:55:32 debian9 kernel: deactivate_locked_super+0x2e/0xa0
Sep 07 11:55:32 debian9 kernel: cleanup_mnt+0x100/0x160
Sep 07 11:55:32 debian9 kernel: task_work_run+0x59/0xa0
Sep 07 11:55:32 debian9 kernel: exit_to_user_mode_prepare+0x1a6/0x1b0
Sep 07 11:55:32 debian9 kernel: syscall_exit_to_user_mode+0x16/0x40
Sep 07 11:55:32 debian9 kernel: do_syscall_64+0x48/0x90
Sep 07 11:55:32 debian9 kernel: entry_SYSCALL_64_after_hwframe+0x63/0xcd
Sep 07 11:55:32 debian9 kernel: RIP: 0033:0x7fcde59a57a7
Sep 07 11:55:32 debian9 kernel: RSP: 002b:00007ffe914217c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
Sep 07 11:55:32 debian9 kernel: RAX: 0000000000000000 RBX: 00007fcde5ae8264 RCX: 00007fcde59a57a7
Sep 07 11:55:32 debian9 kernel: RDX: 0000000000000000 RSI: 0000000000000000 RDI: 000055b57556cdd0
Sep 07 11:55:32 debian9 kernel: RBP: 000055b57556cba0 R08: 0000000000000000 R09: 00007ffe91420570
Sep 07 11:55:32 debian9 kernel: R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
Sep 07 11:55:32 debian9 kernel: R13: 000055b57556cdd0 R14: 000055b57556ccb8 R15: 0000000000000000
Sep 07 11:55:32 debian9 kernel: </TASK>
What happens is the following:
1) The cleaner kthread tries to start a transaction to delete an unused
block group, but the metadata reservation can not be satisfied right
away, so a reservation ticket is created and it starts the async
metadata reclaim task (fs_info->async_reclaim_work);
2) Writeback for all the filler inodes with an i_size of 2K starts
(generic/562 creates a lot of 2K files with the goal of filling
metadata space). We try to create an inline extent for them, but we
fail when trying to insert the inline extent with -ENOSPC (at
cow_file_range_inline()) - since this is not critical, we fallback
to non-inline mode (back to cow_file_range()), reserve extents
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
gve: guard XDP xmit NDO on existence of xdp queues
In GVE, dedicated XDP queues only exist when an XDP program is installed
and the interface is up. As such, the NDO XDP XMIT callback should
return early if either of these conditions are false.
In the case of no loaded XDP program, priv->num_xdp_queues=0 which can
cause a divide-by-zero error, and in the case of interface down,
num_xdp_queues remains untouched to persist XDP queue count for the next
interface up, but the TX pointer itself would be NULL.
The XDP xmit callback also needs to synchronize with a device
transitioning from open to close. This synchronization will happen via
the GVE_PRIV_FLAGS_NAPI_ENABLED bit along with a synchronize_net() call,
which waits for any RCU critical sections at call-time to complete. |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix enomem handling in buffered reads
If netfs_read_to_pagecache() gets an error from either ->prepare_read() or
from netfs_prepare_read_iterator(), it needs to decrement ->nr_outstanding,
cancel the subrequest and break out of the issuing loop. Currently, it
only does this for two of the cases, but there are two more that aren't
handled.
Fix this by moving the handling to a common place and jumping to it from
all four places. This is in preference to inserting a wrapper around
netfs_prepare_read_iterator() as proposed by Dmitry Antipov[1]. |
| In the Linux kernel, the following vulnerability has been resolved:
ipack: ipoctal: fix stack information leak
The tty driver name is used also after registering the driver and must
specifically not be allocated on the stack to avoid leaking information
to user space (or triggering an oops).
Drivers should not try to encode topology information in the tty device
name but this one snuck in through staging without anyone noticing and
another driver has since copied this malpractice.
Fixing the ABI is a separate issue, but this at least plugs the security
hole. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: fix reconnection fail due to reserved tag allocation
We found a issue on production environment while using NVMe over RDMA,
admin_q reconnect failed forever while remote target and network is ok.
After dig into it, we found it may caused by a ABBA deadlock due to tag
allocation. In my case, the tag was hold by a keep alive request
waiting inside admin_q, as we quiesced admin_q while reset ctrl, so the
request maked as idle and will not process before reset success. As
fabric_q shares tagset with admin_q, while reconnect remote target, we
need a tag for connect command, but the only one reserved tag was held
by keep alive command which waiting inside admin_q. As a result, we
failed to reconnect admin_q forever. In order to fix this issue, I
think we should keep two reserved tags for admin queue. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: IPoIB, Block PKEY interfaces with less rx queues than parent
A user is able to configure an arbitrary number of rx queues when
creating an interface via netlink. This doesn't work for child PKEY
interfaces because the child interface uses the parent receive channels.
Although the child shares the parent's receive channels, the number of
rx queues is important for the channel_stats array: the parent's rx
channel index is used to access the child's channel_stats. So the array
has to be at least as large as the parent's rx queue size for the
counting to work correctly and to prevent out of bound accesses.
This patch checks for the mentioned scenario and returns an error when
trying to create the interface. The error is propagated to the user. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: change DMA direction while mapping reinjected packets
For fragmented packets, ath12k reassembles each fragment as a normal
packet and then reinjects it into HW ring. In this case, the DMA
direction should be DMA_TO_DEVICE, not DMA_FROM_DEVICE. Otherwise,
an invalid payload may be reinjected into the HW and
subsequently delivered to the host.
Given that arbitrary memory can be allocated to the skb buffer,
knowledge about the data contained in the reinjected buffer is lacking.
Consequently, there’s a risk of private information being leaked.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.1.1-00209-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: Fix input error path memory access
When there is a misconfiguration of input state slow path
KASAN report error. Fix this error.
west login:
[ 52.987278] eth1: renamed from veth11
[ 53.078814] eth1: renamed from veth21
[ 53.181355] eth1: renamed from veth31
[ 54.921702] ==================================================================
[ 54.922602] BUG: KASAN: wild-memory-access in xfrmi_rcv_cb+0x2d/0x295
[ 54.923393] Read of size 8 at addr 6b6b6b6b00000000 by task ping/512
[ 54.924169]
[ 54.924386] CPU: 0 PID: 512 Comm: ping Not tainted 6.9.0-08574-gcd29a4313a1b #25
[ 54.925290] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 54.926401] Call Trace:
[ 54.926731] <IRQ>
[ 54.927009] dump_stack_lvl+0x2a/0x3b
[ 54.927478] kasan_report+0x84/0xa6
[ 54.927930] ? xfrmi_rcv_cb+0x2d/0x295
[ 54.928410] xfrmi_rcv_cb+0x2d/0x295
[ 54.928872] ? xfrm4_rcv_cb+0x3d/0x5e
[ 54.929354] xfrm4_rcv_cb+0x46/0x5e
[ 54.929804] xfrm_rcv_cb+0x7e/0xa1
[ 54.930240] xfrm_input+0x1b3a/0x1b96
[ 54.930715] ? xfrm_offload+0x41/0x41
[ 54.931182] ? raw_rcv+0x292/0x292
[ 54.931617] ? nf_conntrack_confirm+0xa2/0xa2
[ 54.932158] ? skb_sec_path+0xd/0x3f
[ 54.932610] ? xfrmi_input+0x90/0xce
[ 54.933066] xfrm4_esp_rcv+0x33/0x54
[ 54.933521] ip_protocol_deliver_rcu+0xd7/0x1b2
[ 54.934089] ip_local_deliver_finish+0x110/0x120
[ 54.934659] ? ip_protocol_deliver_rcu+0x1b2/0x1b2
[ 54.935248] NF_HOOK.constprop.0+0xf8/0x138
[ 54.935767] ? ip_sublist_rcv_finish+0x68/0x68
[ 54.936317] ? secure_tcpv6_ts_off+0x23/0x168
[ 54.936859] ? ip_protocol_deliver_rcu+0x1b2/0x1b2
[ 54.937454] ? __xfrm_policy_check2.constprop.0+0x18d/0x18d
[ 54.938135] NF_HOOK.constprop.0+0xf8/0x138
[ 54.938663] ? ip_sublist_rcv_finish+0x68/0x68
[ 54.939220] ? __xfrm_policy_check2.constprop.0+0x18d/0x18d
[ 54.939904] ? ip_local_deliver_finish+0x120/0x120
[ 54.940497] __netif_receive_skb_one_core+0xc9/0x107
[ 54.941121] ? __netif_receive_skb_list_core+0x1c2/0x1c2
[ 54.941771] ? blk_mq_start_stopped_hw_queues+0xc7/0xf9
[ 54.942413] ? blk_mq_start_stopped_hw_queue+0x38/0x38
[ 54.943044] ? virtqueue_get_buf_ctx+0x295/0x46b
[ 54.943618] process_backlog+0xb3/0x187
[ 54.944102] __napi_poll.constprop.0+0x57/0x1a7
[ 54.944669] net_rx_action+0x1cb/0x380
[ 54.945150] ? __napi_poll.constprop.0+0x1a7/0x1a7
[ 54.945744] ? vring_new_virtqueue+0x17a/0x17a
[ 54.946300] ? note_interrupt+0x2cd/0x367
[ 54.946805] handle_softirqs+0x13c/0x2c9
[ 54.947300] do_softirq+0x5f/0x7d
[ 54.947727] </IRQ>
[ 54.948014] <TASK>
[ 54.948300] __local_bh_enable_ip+0x48/0x62
[ 54.948832] __neigh_event_send+0x3fd/0x4ca
[ 54.949361] neigh_resolve_output+0x1e/0x210
[ 54.949896] ip_finish_output2+0x4bf/0x4f0
[ 54.950410] ? __ip_finish_output+0x171/0x1b8
[ 54.950956] ip_send_skb+0x25/0x57
[ 54.951390] raw_sendmsg+0xf95/0x10c0
[ 54.951850] ? check_new_pages+0x45/0x71
[ 54.952343] ? raw_hash_sk+0x21b/0x21b
[ 54.952815] ? kernel_init_pages+0x42/0x51
[ 54.953337] ? prep_new_page+0x44/0x51
[ 54.953811] ? get_page_from_freelist+0x72b/0x915
[ 54.954390] ? signal_pending_state+0x77/0x77
[ 54.954936] ? preempt_count_sub+0x14/0xb3
[ 54.955450] ? __might_resched+0x8a/0x240
[ 54.955951] ? __might_sleep+0x25/0xa0
[ 54.956424] ? first_zones_zonelist+0x2c/0x43
[ 54.956977] ? __rcu_read_lock+0x2d/0x3a
[ 54.957476] ? __pte_offset_map+0x32/0xa4
[ 54.957980] ? __might_resched+0x8a/0x240
[ 54.958483] ? __might_sleep+0x25/0xa0
[ 54.958963] ? inet_send_prepare+0x54/0x54
[ 54.959478] ? sock_sendmsg_nosec+0x42/0x6c
[ 54.960000] sock_sendmsg_nosec+0x42/0x6c
[ 54.960502] __sys_sendto+0x15d/0x1cc
[ 54.960966] ? __x64_sys_getpeername+0x44/0x44
[ 54.961522] ? __handle_mm_fault+0x679/0xae4
[ 54.962068] ? find_vma+0x6b/0x
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
lib: alloc_tag_module_unload must wait for pending kfree_rcu calls
Ben Greear reports following splat:
------------[ cut here ]------------
net/netfilter/nf_nat_core.c:1114 module nf_nat func:nf_nat_register_fn has 256 allocated at module unload
WARNING: CPU: 1 PID: 10421 at lib/alloc_tag.c:168 alloc_tag_module_unload+0x22b/0x3f0
Modules linked in: nf_nat(-) btrfs ufs qnx4 hfsplus hfs minix vfat msdos fat
...
Hardware name: Default string Default string/SKYBAY, BIOS 5.12 08/04/2020
RIP: 0010:alloc_tag_module_unload+0x22b/0x3f0
codetag_unload_module+0x19b/0x2a0
? codetag_load_module+0x80/0x80
nf_nat module exit calls kfree_rcu on those addresses, but the free
operation is likely still pending by the time alloc_tag checks for leaks.
Wait for outstanding kfree_rcu operations to complete before checking
resolves this warning.
Reproducer:
unshare -n iptables-nft -t nat -A PREROUTING -p tcp
grep nf_nat /proc/allocinfo # will list 4 allocations
rmmod nft_chain_nat
rmmod nf_nat # will WARN.
[akpm@linux-foundation.org: add comment] |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: Fix missing of_node_put() for leds
The call of of_get_child_by_name() will cause refcount incremented
for leds, if it succeeds, it should call of_node_put() to decrease
it, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: add check for invalid name in btf_name_valid_section()
If the length of the name string is 1 and the value of name[0] is NULL
byte, an OOB vulnerability occurs in btf_name_valid_section() and the
return value is true, so the invalid name passes the check.
To solve this, you need to check if the first position is NULL byte and
if the first character is printable. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix double put of @cfile in smb2_rename_path()
If smb2_set_path_attr() is called with a valid @cfile and returned
-EINVAL, we need to call cifs_get_writable_path() again as the
reference of @cfile was already dropped by previous smb2_compound_op()
call. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix incorrect size calculation for loop
[WHY]
fe_clk_en has size of 5 but sizeof(fe_clk_en) has byte size 20 which is
lager than the array size.
[HOW]
Divide byte size 20 by its element size.
This fixes 2 OVERRUN issues reported by Coverity. |
| Out of bounds write in ANGLE in Google Chrome prior to 139.0.7258.127 allowed a remote attacker to perform out of bounds memory access via a crafted HTML page. (Chromium security severity: High) |