| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
dm-raid: really frozen sync_thread during suspend
1) commit f52f5c71f3d4 ("md: fix stopping sync thread") remove
MD_RECOVERY_FROZEN from __md_stop_writes() and doesn't realize that
dm-raid relies on __md_stop_writes() to frozen sync_thread
indirectly. Fix this problem by adding MD_RECOVERY_FROZEN in
md_stop_writes(), and since stop_sync_thread() is only used for
dm-raid in this case, also move stop_sync_thread() to
md_stop_writes().
2) The flag MD_RECOVERY_FROZEN doesn't mean that sync thread is frozen,
it only prevent new sync_thread to start, and it can't stop the
running sync thread; In order to frozen sync_thread, after seting the
flag, stop_sync_thread() should be used.
3) The flag MD_RECOVERY_FROZEN doesn't mean that writes are stopped, use
it as condition for md_stop_writes() in raid_postsuspend() doesn't
look correct. Consider that reentrant stop_sync_thread() do nothing,
always call md_stop_writes() in raid_postsuspend().
4) raid_message can set/clear the flag MD_RECOVERY_FROZEN at anytime,
and if MD_RECOVERY_FROZEN is cleared while the array is suspended,
new sync_thread can start unexpected. Fix this by disallow
raid_message() to change sync_thread status during suspend.
Note that after commit f52f5c71f3d4 ("md: fix stopping sync thread"), the
test shell/lvconvert-raid-reshape.sh start to hang in stop_sync_thread(),
and with previous fixes, the test won't hang there anymore, however, the
test will still fail and complain that ext4 is corrupted. And with this
patch, the test won't hang due to stop_sync_thread() or fail due to ext4
is corrupted anymore. However, there is still a deadlock related to
dm-raid456 that will be fixed in following patches. |
| In the Linux kernel, the following vulnerability has been resolved:
hid: cp2112: Fix duplicate workqueue initialization
Previously the cp2112 driver called INIT_DELAYED_WORK within
cp2112_gpio_irq_startup, resulting in duplicate initilizations of the
workqueue on subsequent IRQ startups following an initial request. This
resulted in a warning in set_work_data in workqueue.c, as well as a rare
NULL dereference within process_one_work in workqueue.c.
Initialize the workqueue within _probe instead. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: core: prevent potential string overflow
The dev->id value comes from ida_alloc() so it's a number between zero
and INT_MAX. If it's too high then these sprintf()s will overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
block: Fix page refcounts for unaligned buffers in __bio_release_pages()
Fix an incorrect number of pages being released for buffers that do not
start at the beginning of a page. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: Fix release of pinned pages when __io_uaddr_map fails
Looking at the error path of __io_uaddr_map, if we fail after pinning
the pages for any reasons, ret will be set to -EINVAL and the error
handler won't properly release the pinned pages.
I didn't manage to trigger it without forcing a failure, but it can
happen in real life when memory is heavily fragmented. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Fix out_fput in iommufd_fault_alloc()
As fput() calls the file->f_op->release op, where fault obj and ictx are
getting released, there is no need to release these two after fput() one
more time, which would result in imbalanced refcounts:
refcount_t: decrement hit 0; leaking memory.
WARNING: CPU: 48 PID: 2369 at lib/refcount.c:31 refcount_warn_saturate+0x60/0x230
Call trace:
refcount_warn_saturate+0x60/0x230 (P)
refcount_warn_saturate+0x60/0x230 (L)
iommufd_fault_fops_release+0x9c/0xe0 [iommufd]
...
VFS: Close: file count is 0 (f_op=iommufd_fops [iommufd])
WARNING: CPU: 48 PID: 2369 at fs/open.c:1507 filp_flush+0x3c/0xf0
Call trace:
filp_flush+0x3c/0xf0 (P)
filp_flush+0x3c/0xf0 (L)
__arm64_sys_close+0x34/0x98
...
imbalanced put on file reference count
WARNING: CPU: 48 PID: 2369 at fs/file.c:74 __file_ref_put+0x100/0x138
Call trace:
__file_ref_put+0x100/0x138 (P)
__file_ref_put+0x100/0x138 (L)
__fput_sync+0x4c/0xd0
Drop those two lines to fix the warnings above. |
| In the Linux kernel, the following vulnerability has been resolved:
net: tls, fix WARNIING in __sk_msg_free
A splice with MSG_SPLICE_PAGES will cause tls code to use the
tls_sw_sendmsg_splice path in the TLS sendmsg code to move the user
provided pages from the msg into the msg_pl. This will loop over the
msg until msg_pl is full, checked by sk_msg_full(msg_pl). The user
can also set the MORE flag to hint stack to delay sending until receiving
more pages and ideally a full buffer.
If the user adds more pages to the msg than can fit in the msg_pl
scatterlist (MAX_MSG_FRAGS) we should ignore the MORE flag and send
the buffer anyways.
What actually happens though is we abort the msg to msg_pl scatterlist
setup and then because we forget to set 'full record' indicating we
can no longer consume data without a send we fallthrough to the 'continue'
path which will check if msg_data_left(msg) has more bytes to send and
then attempts to fit them in the already full msg_pl. Then next
iteration of sender doing send will encounter a full msg_pl and throw
the warning in the syzbot report.
To fix simply check if we have a full_record in splice code path and
if not send the msg regardless of MORE flag. |
| In the Linux kernel, the following vulnerability has been resolved:
fork: do not invoke uffd on fork if error occurs
Patch series "fork: do not expose incomplete mm on fork".
During fork we may place the virtual memory address space into an
inconsistent state before the fork operation is complete.
In addition, we may encounter an error during the fork operation that
indicates that the virtual memory address space is invalidated.
As a result, we should not be exposing it in any way to external machinery
that might interact with the mm or VMAs, machinery that is not designed to
deal with incomplete state.
We specifically update the fork logic to defer khugepaged and ksm to the
end of the operation and only to be invoked if no error arose, and
disallow uffd from observing fork events should an error have occurred.
This patch (of 2):
Currently on fork we expose the virtual address space of a process to
userland unconditionally if uffd is registered in VMAs, regardless of
whether an error arose in the fork.
This is performed in dup_userfaultfd_complete() which is invoked
unconditionally, and performs two duties - invoking registered handlers
for the UFFD_EVENT_FORK event via dup_fctx(), and clearing down
userfaultfd_fork_ctx objects established in dup_userfaultfd().
This is problematic, because the virtual address space may not yet be
correctly initialised if an error arose.
The change in commit d24062914837 ("fork: use __mt_dup() to duplicate
maple tree in dup_mmap()") makes this more pertinent as we may be in a
state where entries in the maple tree are not yet consistent.
We address this by, on fork error, ensuring that we roll back state that
we would otherwise expect to clean up through the event being handled by
userland and perform the memory freeing duty otherwise performed by
dup_userfaultfd_complete().
We do this by implementing a new function, dup_userfaultfd_fail(), which
performs the same loop, only decrementing reference counts.
Note that we perform mmgrab() on the parent and child mm's, however
userfaultfd_ctx_put() will mmdrop() this once the reference count drops to
zero, so we will avoid memory leaks correctly here. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix reserve_cblocks counting error when out of space
When a file only needs one direct_node, performing the following
operations will cause the file to be unrepairable:
unisoc # ./f2fs_io compress test.apk
unisoc #df -h | grep dm-48
/dev/block/dm-48 112G 112G 1.2M 100% /data
unisoc # ./f2fs_io release_cblocks test.apk
924
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 4.8M 100% /data
unisoc # dd if=/dev/random of=file4 bs=1M count=3
3145728 bytes (3.0 M) copied, 0.025 s, 120 M/s
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 1.8M 100% /data
unisoc # ./f2fs_io reserve_cblocks test.apk
F2FS_IOC_RESERVE_COMPRESS_BLOCKS failed: No space left on device
adb reboot
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 11M 100% /data
unisoc # ./f2fs_io reserve_cblocks test.apk
0
This is because the file has only one direct_node. After returning
to -ENOSPC, reserved_blocks += ret will not be executed. As a result,
the reserved_blocks at this time is still 0, which is not the real
number of reserved blocks. Therefore, fsck cannot be set to repair
the file.
After this patch, the fsck flag will be set to fix this problem.
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 1.8M 100% /data
unisoc # ./f2fs_io reserve_cblocks test.apk
F2FS_IOC_RESERVE_COMPRESS_BLOCKS failed: No space left on device
adb reboot then fsck will be executed
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 11M 100% /data
unisoc # ./f2fs_io reserve_cblocks test.apk
924 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: support deferring bpf_link dealloc to after RCU grace period
BPF link for some program types is passed as a "context" which can be
used by those BPF programs to look up additional information. E.g., for
multi-kprobes and multi-uprobes, link is used to fetch BPF cookie values.
Because of this runtime dependency, when bpf_link refcnt drops to zero
there could still be active BPF programs running accessing link data.
This patch adds generic support to defer bpf_link dealloc callback to
after RCU GP, if requested. This is done by exposing two different
deallocation callbacks, one synchronous and one deferred. If deferred
one is provided, bpf_link_free() will schedule dealloc_deferred()
callback to happen after RCU GP.
BPF is using two flavors of RCU: "classic" non-sleepable one and RCU
tasks trace one. The latter is used when sleepable BPF programs are
used. bpf_link_free() accommodates that by checking underlying BPF
program's sleepable flag, and goes either through normal RCU GP only for
non-sleepable, or through RCU tasks trace GP *and* then normal RCU GP
(taking into account rcu_trace_implies_rcu_gp() optimization), if BPF
program is sleepable.
We use this for multi-kprobe and multi-uprobe links, which dereference
link during program run. We also preventively switch raw_tp link to use
deferred dealloc callback, as upcoming changes in bpf-next tree expose
raw_tp link data (specifically, cookie value) to BPF program at runtime
as well. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/efistub: Call mixed mode boot services on the firmware's stack
Normally, the EFI stub calls into the EFI boot services using the stack
that was live when the stub was entered. According to the UEFI spec,
this stack needs to be at least 128k in size - this might seem large but
all asynchronous processing and event handling in EFI runs from the same
stack and so quite a lot of space may be used in practice.
In mixed mode, the situation is a bit different: the bootloader calls
the 32-bit EFI stub entry point, which calls the decompressor's 32-bit
entry point, where the boot stack is set up, using a fixed allocation
of 16k. This stack is still in use when the EFI stub is started in
64-bit mode, and so all calls back into the EFI firmware will be using
the decompressor's limited boot stack.
Due to the placement of the boot stack right after the boot heap, any
stack overruns have gone unnoticed. However, commit
5c4feadb0011983b ("x86/decompressor: Move global symbol references to C code")
moved the definition of the boot heap into C code, and now the boot
stack is placed right at the base of BSS, where any overruns will
corrupt the end of the .data section.
While it would be possible to work around this by increasing the size of
the boot stack, doing so would affect all x86 systems, and mixed mode
systems are a tiny (and shrinking) fraction of the x86 installed base.
So instead, record the firmware stack pointer value when entering from
the 32-bit firmware, and switch to this stack every time a EFI boot
service call is made. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Fix the lifetime of the bo cursor memory
The cleanup can be dispatched while the atomic update is still active,
which means that the memory acquired in the atomic update needs to
not be invalidated by the cleanup. The buffer objects in vmw_plane_state
instead of using the builtin map_and_cache were trying to handle
the lifetime of the mapped memory themselves, leading to crashes.
Use the map_and_cache instead of trying to manage the lifetime of the
buffer objects held by the vmw_plane_state.
Fixes kernel oops'es in IGT's kms_cursor_legacy forked-bo. |
| In the Linux kernel, the following vulnerability has been resolved:
net: txgbe: initialize num_q_vectors for MSI/INTx interrupts
When using MSI/INTx interrupts, wx->num_q_vectors is uninitialized.
Thus there will be kernel panic in wx_alloc_q_vectors() to allocate
queue vectors. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: ASSERT when failing to find index by plane/stream id
[WHY]
find_disp_cfg_idx_by_plane_id and find_disp_cfg_idx_by_stream_id returns
an array index and they return -1 when not found; however, -1 is not a
valid index number.
[HOW]
When this happens, call ASSERT(), and return a positive number (which is
fewer than callers' array size) instead.
This fixes 4 OVERRUN and 2 NEGATIVE_RETURNS issues reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: always do the basic checks for btrfs_qgroup_inherit structure
[BUG]
Syzbot reports the following regression detected by KASAN:
BUG: KASAN: slab-out-of-bounds in btrfs_qgroup_inherit+0x42e/0x2e20 fs/btrfs/qgroup.c:3277
Read of size 8 at addr ffff88814628ca50 by task syz-executor318/5171
CPU: 0 PID: 5171 Comm: syz-executor318 Not tainted 6.10.0-rc2-syzkaller-00010-g2ab795141095 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
btrfs_qgroup_inherit+0x42e/0x2e20 fs/btrfs/qgroup.c:3277
create_pending_snapshot+0x1359/0x29b0 fs/btrfs/transaction.c:1854
create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1922
btrfs_commit_transaction+0xf20/0x3740 fs/btrfs/transaction.c:2382
create_snapshot+0x6a1/0x9e0 fs/btrfs/ioctl.c:875
btrfs_mksubvol+0x58f/0x710 fs/btrfs/ioctl.c:1029
btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1075
__btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1340
btrfs_ioctl_snap_create_v2+0x1f2/0x3a0 fs/btrfs/ioctl.c:1422
btrfs_ioctl+0x99e/0xc60
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fcbf1992509
RSP: 002b:00007fcbf1928218 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fcbf1a1f618 RCX: 00007fcbf1992509
RDX: 0000000020000280 RSI: 0000000050009417 RDI: 0000000000000003
RBP: 00007fcbf1a1f610 R08: 00007ffea1298e97 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fcbf19eb660
R13: 00000000200002b8 R14: 00007fcbf19e60c0 R15: 0030656c69662f2e
</TASK>
And it also pinned it down to commit b5357cb268c4 ("btrfs: qgroup: do not
check qgroup inherit if qgroup is disabled").
[CAUSE]
That offending commit skips the whole qgroup inherit check if qgroup is
not enabled.
But that also skips the very basic checks like
num_ref_copies/num_excl_copies and the structure size checks.
Meaning if a qgroup enable/disable race is happening at the background,
and we pass a btrfs_qgroup_inherit structure when the qgroup is
disabled, the check would be completely skipped.
Then at the time of transaction commitment, qgroup is re-enabled and
btrfs_qgroup_inherit() is going to use the incorrect structure and
causing the above KASAN error.
[FIX]
Make btrfs_qgroup_check_inherit() only skip the source qgroup checks.
So that even if invalid btrfs_qgroup_inherit structure is passed in, we
can still reject invalid ones no matter if qgroup is enabled or not.
Furthermore we do already have an extra safety inside
btrfs_qgroup_inherit(), which would just ignore invalid qgroup sources,
so even if we only skip the qgroup source check we're still safe. |
| In the Linux kernel, the following vulnerability has been resolved:
firewire: ohci: prevent leak of left-over IRQ on unbind
Commit 5a95f1ded28691e6 ("firewire: ohci: use devres for requested IRQ")
also removed the call to free_irq() in pci_remove(), leading to a
leftover irq of devm_request_irq() at pci_disable_msi() in pci_remove()
when unbinding the driver from the device
remove_proc_entry: removing non-empty directory 'irq/136', leaking at
least 'firewire_ohci'
Call Trace:
? remove_proc_entry+0x19c/0x1c0
? __warn+0x81/0x130
? remove_proc_entry+0x19c/0x1c0
? report_bug+0x171/0x1a0
? console_unlock+0x78/0x120
? handle_bug+0x3c/0x80
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? remove_proc_entry+0x19c/0x1c0
unregister_irq_proc+0xf4/0x120
free_desc+0x3d/0xe0
? kfree+0x29f/0x2f0
irq_free_descs+0x47/0x70
msi_domain_free_locked.part.0+0x19d/0x1d0
msi_domain_free_irqs_all_locked+0x81/0xc0
pci_free_msi_irqs+0x12/0x40
pci_disable_msi+0x4c/0x60
pci_remove+0x9d/0xc0 [firewire_ohci
01b483699bebf9cb07a3d69df0aa2bee71db1b26]
pci_device_remove+0x37/0xa0
device_release_driver_internal+0x19f/0x200
unbind_store+0xa1/0xb0
remove irq with devm_free_irq() before pci_disable_msi()
also remove it in fail_msi: of pci_probe() as this would lead to
an identical leak |
| In the Linux kernel, the following vulnerability has been resolved:
clk: sunxi-ng: common: Don't call hw_to_ccu_common on hw without common
In order to set the rate range of a hw sunxi_ccu_probe calls
hw_to_ccu_common() assuming all entries in desc->ccu_clks are contained
in a ccu_common struct. This assumption is incorrect and, in
consequence, causes invalid pointer de-references.
Remove the faulty call. Instead, add one more loop that iterates over
the ccu_clks and sets the rate range, if required. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: amdgpu_ttm_gart_bind set gtt bound flag
Otherwise after the GTT bo is released, the GTT and gart space is freed
but amdgpu_ttm_backend_unbind will not clear the gart page table entry
and leave valid mapping entry pointing to the stale system page. Then
if GPU access the gart address mistakely, it will read undefined value
instead page fault, harder to debug and reproduce the real issue. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Define the __io_aw() hook as mmiowb()
Commit fb24ea52f78e0d595852e ("drivers: Remove explicit invocations of
mmiowb()") remove all mmiowb() in drivers, but it says:
"NOTE: mmiowb() has only ever guaranteed ordering in conjunction with
spin_unlock(). However, pairing each mmiowb() removal in this patch with
the corresponding call to spin_unlock() is not at all trivial, so there
is a small chance that this change may regress any drivers incorrectly
relying on mmiowb() to order MMIO writes between CPUs using lock-free
synchronisation."
The mmio in radeon_ring_commit() is protected by a mutex rather than a
spinlock, but in the mutex fastpath it behaves similar to spinlock. We
can add mmiowb() calls in the radeon driver but the maintainer says he
doesn't like such a workaround, and radeon is not the only example of
mutex protected mmio.
So we should extend the mmiowb tracking system from spinlock to mutex,
and maybe other locking primitives. This is not easy and error prone, so
we solve it in the architectural code, by simply defining the __io_aw()
hook as mmiowb(). And we no longer need to override queued_spin_unlock()
so use the generic definition.
Without this, we get such an error when run 'glxgears' on weak ordering
architectures such as LoongArch:
radeon 0000:04:00.0: ring 0 stalled for more than 10324msec
radeon 0000:04:00.0: ring 3 stalled for more than 10240msec
radeon 0000:04:00.0: GPU lockup (current fence id 0x000000000001f412 last fence id 0x000000000001f414 on ring 3)
radeon 0000:04:00.0: GPU lockup (current fence id 0x000000000000f940 last fence id 0x000000000000f941 on ring 0)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) |
| NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability in the Python backend, where an attacker could cause a remote code execution by manipulating the model name parameter in the model control APIs. A successful exploit of this vulnerability might lead to remote code execution, denial of service, information disclosure, and data tampering. |