Search

Search Results (310646 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53352 1 Linux 1 Linux Kernel 2025-09-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/ttm: check null pointer before accessing when swapping Add a check to avoid null pointer dereference as below: [ 90.002283] general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN NOPTI [ 90.002292] KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] [ 90.002346] ? exc_general_protection+0x159/0x240 [ 90.002352] ? asm_exc_general_protection+0x26/0x30 [ 90.002357] ? ttm_bo_evict_swapout_allowable+0x322/0x5e0 [ttm] [ 90.002365] ? ttm_bo_evict_swapout_allowable+0x42e/0x5e0 [ttm] [ 90.002373] ttm_bo_swapout+0x134/0x7f0 [ttm] [ 90.002383] ? __pfx_ttm_bo_swapout+0x10/0x10 [ttm] [ 90.002391] ? lock_acquire+0x44d/0x4f0 [ 90.002398] ? ttm_device_swapout+0xa5/0x260 [ttm] [ 90.002412] ? lock_acquired+0x355/0xa00 [ 90.002416] ? do_raw_spin_trylock+0xb6/0x190 [ 90.002421] ? __pfx_lock_acquired+0x10/0x10 [ 90.002426] ? ttm_global_swapout+0x25/0x210 [ttm] [ 90.002442] ttm_device_swapout+0x198/0x260 [ttm] [ 90.002456] ? __pfx_ttm_device_swapout+0x10/0x10 [ttm] [ 90.002472] ttm_global_swapout+0x75/0x210 [ttm] [ 90.002486] ttm_tt_populate+0x187/0x3f0 [ttm] [ 90.002501] ttm_bo_handle_move_mem+0x437/0x590 [ttm] [ 90.002517] ttm_bo_validate+0x275/0x430 [ttm] [ 90.002530] ? __pfx_ttm_bo_validate+0x10/0x10 [ttm] [ 90.002544] ? kasan_save_stack+0x33/0x60 [ 90.002550] ? kasan_set_track+0x25/0x30 [ 90.002554] ? __kasan_kmalloc+0x8f/0xa0 [ 90.002558] ? amdgpu_gtt_mgr_new+0x81/0x420 [amdgpu] [ 90.003023] ? ttm_resource_alloc+0xf6/0x220 [ttm] [ 90.003038] amdgpu_bo_pin_restricted+0x2dd/0x8b0 [amdgpu] [ 90.003210] ? __x64_sys_ioctl+0x131/0x1a0 [ 90.003210] ? do_syscall_64+0x60/0x90
CVE-2023-53363 1 Linux 1 Linux Kernel 2025-09-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: PCI: Fix use-after-free in pci_bus_release_domain_nr() Commit c14f7ccc9f5d ("PCI: Assign PCI domain IDs by ida_alloc()") introduced a use-after-free bug in the bus removal cleanup. The issue was found with kfence: [ 19.293351] BUG: KFENCE: use-after-free read in pci_bus_release_domain_nr+0x10/0x70 [ 19.302817] Use-after-free read at 0x000000007f3b80eb (in kfence-#115): [ 19.309677] pci_bus_release_domain_nr+0x10/0x70 [ 19.309691] dw_pcie_host_deinit+0x28/0x78 [ 19.309702] tegra_pcie_deinit_controller+0x1c/0x38 [pcie_tegra194] [ 19.309734] tegra_pcie_dw_probe+0x648/0xb28 [pcie_tegra194] [ 19.309752] platform_probe+0x90/0xd8 ... [ 19.311457] kfence-#115: 0x00000000063a155a-0x00000000ba698da8, size=1072, cache=kmalloc-2k [ 19.311469] allocated by task 96 on cpu 10 at 19.279323s: [ 19.311562] __kmem_cache_alloc_node+0x260/0x278 [ 19.311571] kmalloc_trace+0x24/0x30 [ 19.311580] pci_alloc_bus+0x24/0xa0 [ 19.311590] pci_register_host_bridge+0x48/0x4b8 [ 19.311601] pci_scan_root_bus_bridge+0xc0/0xe8 [ 19.311613] pci_host_probe+0x18/0xc0 [ 19.311623] dw_pcie_host_init+0x2c0/0x568 [ 19.311630] tegra_pcie_dw_probe+0x610/0xb28 [pcie_tegra194] [ 19.311647] platform_probe+0x90/0xd8 ... [ 19.311782] freed by task 96 on cpu 10 at 19.285833s: [ 19.311799] release_pcibus_dev+0x30/0x40 [ 19.311808] device_release+0x30/0x90 [ 19.311814] kobject_put+0xa8/0x120 [ 19.311832] device_unregister+0x20/0x30 [ 19.311839] pci_remove_bus+0x78/0x88 [ 19.311850] pci_remove_root_bus+0x5c/0x98 [ 19.311860] dw_pcie_host_deinit+0x28/0x78 [ 19.311866] tegra_pcie_deinit_controller+0x1c/0x38 [pcie_tegra194] [ 19.311883] tegra_pcie_dw_probe+0x648/0xb28 [pcie_tegra194] [ 19.311900] platform_probe+0x90/0xd8 ... [ 19.313579] CPU: 10 PID: 96 Comm: kworker/u24:2 Not tainted 6.2.0 #4 [ 19.320171] Hardware name: /, BIOS 1.0-d7fb19b 08/10/2022 [ 19.325852] Workqueue: events_unbound deferred_probe_work_func The stack trace is a bit misleading as dw_pcie_host_deinit() doesn't directly call pci_bus_release_domain_nr(). The issue turns out to be in pci_remove_root_bus() which first calls pci_remove_bus() which frees the struct pci_bus when its struct device is released. Then pci_bus_release_domain_nr() is called and accesses the freed struct pci_bus. Reordering these fixes the issue.
CVE-2022-50371 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: led: qcom-lpg: Fix sleeping in atomic lpg_brighness_set() function can sleep, while led's brightness_set() callback must be non-blocking. Change LPG driver to use brightness_set_blocking() instead. BUG: sleeping function called from invalid context at kernel/locking/mutex.c:580 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 0, name: swapper/0 preempt_count: 101, expected: 0 INFO: lockdep is turned off. CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 6.1.0-rc1-00014-gbe99b089c6fc-dirty #85 Hardware name: Qualcomm Technologies, Inc. DB820c (DT) Call trace: dump_backtrace.part.0+0xe4/0xf0 show_stack+0x18/0x40 dump_stack_lvl+0x88/0xb4 dump_stack+0x18/0x34 __might_resched+0x170/0x254 __might_sleep+0x48/0x9c __mutex_lock+0x4c/0x400 mutex_lock_nested+0x2c/0x40 lpg_brightness_single_set+0x40/0x90 led_set_brightness_nosleep+0x34/0x60 led_heartbeat_function+0x80/0x170 call_timer_fn+0xb8/0x340 __run_timers.part.0+0x20c/0x254 run_timer_softirq+0x3c/0x7c _stext+0x14c/0x578 ____do_softirq+0x10/0x20 call_on_irq_stack+0x2c/0x5c do_softirq_own_stack+0x1c/0x30 __irq_exit_rcu+0x164/0x170 irq_exit_rcu+0x10/0x40 el1_interrupt+0x38/0x50 el1h_64_irq_handler+0x18/0x2c el1h_64_irq+0x64/0x68 cpuidle_enter_state+0xc8/0x380 cpuidle_enter+0x38/0x50 do_idle+0x244/0x2d0 cpu_startup_entry+0x24/0x30 rest_init+0x128/0x1a0 arch_post_acpi_subsys_init+0x0/0x18 start_kernel+0x6f4/0x734 __primary_switched+0xbc/0xc4
CVE-2023-53341 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: of/fdt: run soc memory setup when early_init_dt_scan_memory fails If memory has been found early_init_dt_scan_memory now returns 1. If it hasn't found any memory it will return 0, allowing other memory setup mechanisms to carry on. Previously early_init_dt_scan_memory always returned 0 without distinguishing between any kind of memory setup being done or not. Any code path after the early_init_dt_scan memory call in the ramips plat_mem_setup code wouldn't be executed anymore. Making early_init_dt_scan_memory the only way to initialize the memory. Some boards, including my mt7621 based Cudy X6 board, depend on memory initialization being done via the soc_info.mem_detect function pointer. Those wouldn't be able to obtain memory and panic the kernel during early bootup with the message "early_init_dt_alloc_memory_arch: Failed to allocate 12416 bytes align=0x40".
CVE-2023-53368 1 Linux 1 Linux Kernel 2025-09-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tracing: Fix race issue between cpu buffer write and swap Warning happened in rb_end_commit() at code: if (RB_WARN_ON(cpu_buffer, !local_read(&cpu_buffer->committing))) WARNING: CPU: 0 PID: 139 at kernel/trace/ring_buffer.c:3142 rb_commit+0x402/0x4a0 Call Trace: ring_buffer_unlock_commit+0x42/0x250 trace_buffer_unlock_commit_regs+0x3b/0x250 trace_event_buffer_commit+0xe5/0x440 trace_event_buffer_reserve+0x11c/0x150 trace_event_raw_event_sched_switch+0x23c/0x2c0 __traceiter_sched_switch+0x59/0x80 __schedule+0x72b/0x1580 schedule+0x92/0x120 worker_thread+0xa0/0x6f0 It is because the race between writing event into cpu buffer and swapping cpu buffer through file per_cpu/cpu0/snapshot: Write on CPU 0 Swap buffer by per_cpu/cpu0/snapshot on CPU 1 -------- -------- tracing_snapshot_write() [...] ring_buffer_lock_reserve() cpu_buffer = buffer->buffers[cpu]; // 1. Suppose find 'cpu_buffer_a'; [...] rb_reserve_next_event() [...] ring_buffer_swap_cpu() if (local_read(&cpu_buffer_a->committing)) goto out_dec; if (local_read(&cpu_buffer_b->committing)) goto out_dec; buffer_a->buffers[cpu] = cpu_buffer_b; buffer_b->buffers[cpu] = cpu_buffer_a; // 2. cpu_buffer has swapped here. rb_start_commit(cpu_buffer); if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { // 3. This check passed due to 'cpu_buffer->buffer' [...] // has not changed here. return NULL; } cpu_buffer_b->buffer = buffer_a; cpu_buffer_a->buffer = buffer_b; [...] // 4. Reserve event from 'cpu_buffer_a'. ring_buffer_unlock_commit() [...] cpu_buffer = buffer->buffers[cpu]; // 5. Now find 'cpu_buffer_b' !!! rb_commit(cpu_buffer) rb_end_commit() // 6. WARN for the wrong 'committing' state !!! Based on above analysis, we can easily reproduce by following testcase: ``` bash #!/bin/bash dmesg -n 7 sysctl -w kernel.panic_on_warn=1 TR=/sys/kernel/tracing echo 7 > ${TR}/buffer_size_kb echo "sched:sched_switch" > ${TR}/set_event while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & ``` To fix it, IIUC, we can use smp_call_function_single() to do the swap on the target cpu where the buffer is located, so that above race would be avoided.
CVE-2025-10614 1 Itsourcecode 1 E-logbook With Health Monitoring System For Covid-19 2025-09-18 4.3 Medium
A vulnerability was determined in itsourcecode E-Logbook with Health Monitoring System for COVID-19 1.0 on COVID. This affects an unknown function of the file /print_reports_prev.php. Executing manipulation of the argument profile_id can lead to cross site scripting. It is possible to launch the attack remotely. The exploit has been publicly disclosed and may be utilized.
CVE-2025-59414 1 Nuxt 1 Nuxt 2025-09-18 3.1 Low
Nuxt is an open-source web development framework for Vue.js. Prior to 3.19.0 and 4.1.0, A client-side path traversal vulnerability in Nuxt's Island payload revival mechanism allowed attackers to manipulate client-side requests to different endpoints within the same application domain when specific prerendering conditions are met. The vulnerability occurs in the client-side payload revival process (revive-payload.client.ts) where Nuxt Islands are automatically fetched when encountering serialized __nuxt_island objects. During prerendering, if an API endpoint returns user-controlled data containing a crafted __nuxt_island object, he data gets serialized with devalue.stringify and stored in the prerendered page. When a client navigates to the prerendered page, devalue.parse deserializes the payload. The Island reviver attempts to fetch /__nuxt_island/${key}.json where key could contain path traversal sequences. Update to Nuxt 3.19.0+ or 4.1.0+.
CVE-2022-50361 1 Linux 1 Linux Kernel 2025-09-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: wilc1000: add missing unregister_netdev() in wilc_netdev_ifc_init() Fault injection test reports this issue: kernel BUG at net/core/dev.c:10731! invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI Call Trace: <TASK> wilc_netdev_ifc_init+0x19f/0x220 [wilc1000 884bf126e9e98af6a708f266a8dffd53f99e4bf5] wilc_cfg80211_init+0x30c/0x380 [wilc1000 884bf126e9e98af6a708f266a8dffd53f99e4bf5] wilc_bus_probe+0xad/0x2b0 [wilc1000_spi 1520a7539b6589cc6cde2ae826a523a33f8bacff] spi_probe+0xe4/0x140 really_probe+0x17e/0x3f0 __driver_probe_device+0xe3/0x170 driver_probe_device+0x49/0x120 The root case here is alloc_ordered_workqueue() fails, but cfg80211_unregister_netdevice() or unregister_netdev() not be called in error handling path. To fix add unregister_netdev goto lable to add the unregister operation in error handling path.
CVE-2025-10599 1 Itsourcecode 1 Web-based Internet Laboratory Management System 2025-09-18 7.3 High
A security flaw has been discovered in itsourcecode Web-Based Internet Laboratory Management System 1.0. Impacted is the function User::AuthenticateUser of the file login.php. Performing manipulation of the argument user_email results in sql injection. Remote exploitation of the attack is possible. The exploit has been released to the public and may be exploited.
CVE-2022-50356 1 Linux 1 Linux Kernel 2025-09-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: sched: sfb: fix null pointer access issue when sfb_init() fails When the default qdisc is sfb, if the qdisc of dev_queue fails to be inited during mqprio_init(), sfb_reset() is invoked to clear resources. In this case, the q->qdisc is NULL, and it will cause gpf issue. The process is as follows: qdisc_create_dflt() sfb_init() tcf_block_get() --->failed, q->qdisc is NULL ... qdisc_put() ... sfb_reset() qdisc_reset(q->qdisc) --->q->qdisc is NULL ops = qdisc->ops The following is the Call Trace information: general protection fault, probably for non-canonical address 0xdffffc0000000003: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f] RIP: 0010:qdisc_reset+0x2b/0x6f0 Call Trace: <TASK> sfb_reset+0x37/0xd0 qdisc_reset+0xed/0x6f0 qdisc_destroy+0x82/0x4c0 qdisc_put+0x9e/0xb0 qdisc_create_dflt+0x2c3/0x4a0 mqprio_init+0xa71/0x1760 qdisc_create+0x3eb/0x1000 tc_modify_qdisc+0x408/0x1720 rtnetlink_rcv_msg+0x38e/0xac0 netlink_rcv_skb+0x12d/0x3a0 netlink_unicast+0x4a2/0x740 netlink_sendmsg+0x826/0xcc0 sock_sendmsg+0xc5/0x100 ____sys_sendmsg+0x583/0x690 ___sys_sendmsg+0xe8/0x160 __sys_sendmsg+0xbf/0x160 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f2164122d04 </TASK>
CVE-2022-50359 1 Linux 1 Linux Kernel 2025-09-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: media: cx88: Fix a null-ptr-deref bug in buffer_prepare() When the driver calls cx88_risc_buffer() to prepare the buffer, the function call may fail, resulting in a empty buffer and null-ptr-deref later in buffer_queue(). The following log can reveal it: [ 41.822762] general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI [ 41.824488] KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] [ 41.828027] RIP: 0010:buffer_queue+0xc2/0x500 [ 41.836311] Call Trace: [ 41.836945] __enqueue_in_driver+0x141/0x360 [ 41.837262] vb2_start_streaming+0x62/0x4a0 [ 41.838216] vb2_core_streamon+0x1da/0x2c0 [ 41.838516] __vb2_init_fileio+0x981/0xbc0 [ 41.839141] __vb2_perform_fileio+0xbf9/0x1120 [ 41.840072] vb2_fop_read+0x20e/0x400 [ 41.840346] v4l2_read+0x215/0x290 [ 41.840603] vfs_read+0x162/0x4c0 Fix this by checking the return value of cx88_risc_buffer() [hverkuil: fix coding style issues]
CVE-2022-50365 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: skbuff: Account for tail adjustment during pull operations Extending the tail can have some unexpected side effects if a program uses a helper like BPF_FUNC_skb_pull_data to read partial content beyond the head skb headlen when all the skbs in the gso frag_list are linear with no head_frag - kernel BUG at net/core/skbuff.c:4219! pc : skb_segment+0xcf4/0xd2c lr : skb_segment+0x63c/0xd2c Call trace: skb_segment+0xcf4/0xd2c __udp_gso_segment+0xa4/0x544 udp4_ufo_fragment+0x184/0x1c0 inet_gso_segment+0x16c/0x3a4 skb_mac_gso_segment+0xd4/0x1b0 __skb_gso_segment+0xcc/0x12c udp_rcv_segment+0x54/0x16c udp_queue_rcv_skb+0x78/0x144 udp_unicast_rcv_skb+0x8c/0xa4 __udp4_lib_rcv+0x490/0x68c udp_rcv+0x20/0x30 ip_protocol_deliver_rcu+0x1b0/0x33c ip_local_deliver+0xd8/0x1f0 ip_rcv+0x98/0x1a4 deliver_ptype_list_skb+0x98/0x1ec __netif_receive_skb_core+0x978/0xc60 Fix this by marking these skbs as GSO_DODGY so segmentation can handle the tail updates accordingly.
CVE-2022-50369 1 Linux 1 Linux Kernel 2025-09-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/vkms: Fix null-ptr-deref in vkms_release() A null-ptr-deref is triggered when it tries to destroy the workqueue in vkms->output.composer_workq in vkms_release(). KASAN: null-ptr-deref in range [0x0000000000000118-0x000000000000011f] CPU: 5 PID: 17193 Comm: modprobe Not tainted 6.0.0-11331-gd465bff130bf #24 RIP: 0010:destroy_workqueue+0x2f/0x710 ... Call Trace: <TASK> ? vkms_config_debugfs_init+0x50/0x50 [vkms] __devm_drm_dev_alloc+0x15a/0x1c0 [drm] vkms_init+0x245/0x1000 [vkms] do_one_initcall+0xd0/0x4f0 do_init_module+0x1a4/0x680 load_module+0x6249/0x7110 __do_sys_finit_module+0x140/0x200 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 The reason is that an OOM happened which triggers the destroy of the workqueue, however, the workqueue is alloced in the later process, thus a null-ptr-deref happened. A simple call graph is shown as below: vkms_init() vkms_create() devm_drm_dev_alloc() __devm_drm_dev_alloc() devm_drm_dev_init() devm_add_action_or_reset() devm_add_action() # an error happened devm_drm_dev_init_release() drm_dev_put() kref_put() drm_dev_release() vkms_release() destroy_workqueue() # null-ptr-deref happened vkms_modeset_init() vkms_output_init() vkms_crtc_init() # where the workqueue get allocated Fix this by checking if composer_workq is NULL before passing it to the destroy_workqueue() in vkms_release().
CVE-2022-50372 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix memory leak when build ntlmssp negotiate blob failed There is a memory leak when mount cifs: unreferenced object 0xffff888166059600 (size 448): comm "mount.cifs", pid 51391, jiffies 4295596373 (age 330.596s) hex dump (first 32 bytes): fe 53 4d 42 40 00 00 00 00 00 00 00 01 00 82 00 .SMB@........... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<0000000060609a61>] mempool_alloc+0xe1/0x260 [<00000000adfa6c63>] cifs_small_buf_get+0x24/0x60 [<00000000ebb404c7>] __smb2_plain_req_init+0x32/0x460 [<00000000bcf875b4>] SMB2_sess_alloc_buffer+0xa4/0x3f0 [<00000000753a2987>] SMB2_sess_auth_rawntlmssp_negotiate+0xf5/0x480 [<00000000f0c1f4f9>] SMB2_sess_setup+0x253/0x410 [<00000000a8b83303>] cifs_setup_session+0x18f/0x4c0 [<00000000854bd16d>] cifs_get_smb_ses+0xae7/0x13c0 [<000000006cbc43d9>] mount_get_conns+0x7a/0x730 [<000000005922d816>] cifs_mount+0x103/0xd10 [<00000000e33def3b>] cifs_smb3_do_mount+0x1dd/0xc90 [<0000000078034979>] smb3_get_tree+0x1d5/0x300 [<000000004371f980>] vfs_get_tree+0x41/0xf0 [<00000000b670d8a7>] path_mount+0x9b3/0xdd0 [<000000005e839a7d>] __x64_sys_mount+0x190/0x1d0 [<000000009404c3b9>] do_syscall_64+0x35/0x80 When build ntlmssp negotiate blob failed, the session setup request should be freed.
CVE-2023-53339 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix BUG_ON condition in btrfs_cancel_balance Pausing and canceling balance can race to interrupt balance lead to BUG_ON panic in btrfs_cancel_balance. The BUG_ON condition in btrfs_cancel_balance does not take this race scenario into account. However, the race condition has no other side effects. We can fix that. Reproducing it with panic trace like this: kernel BUG at fs/btrfs/volumes.c:4618! RIP: 0010:btrfs_cancel_balance+0x5cf/0x6a0 Call Trace: <TASK> ? do_nanosleep+0x60/0x120 ? hrtimer_nanosleep+0xb7/0x1a0 ? sched_core_clone_cookie+0x70/0x70 btrfs_ioctl_balance_ctl+0x55/0x70 btrfs_ioctl+0xa46/0xd20 __x64_sys_ioctl+0x7d/0xa0 do_syscall_64+0x38/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Race scenario as follows: > mutex_unlock(&fs_info->balance_mutex); > -------------------- > .......issue pause and cancel req in another thread > -------------------- > ret = __btrfs_balance(fs_info); > > mutex_lock(&fs_info->balance_mutex); > if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { > btrfs_info(fs_info, "balance: paused"); > btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); > }
CVE-2023-53351 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/sched: Check scheduler work queue before calling timeout handling During an IGT GPU reset test we see again oops despite of commit 0c8c901aaaebc9 (drm/sched: Check scheduler ready before calling timeout handling). It uses ready condition whether to call drm_sched_fault which unwind the TDR leads to GPU reset. However it looks the ready condition is overloaded with other meanings, for example, for the following stack is related GPU reset : 0 gfx_v9_0_cp_gfx_start 1 gfx_v9_0_cp_gfx_resume 2 gfx_v9_0_cp_resume 3 gfx_v9_0_hw_init 4 gfx_v9_0_resume 5 amdgpu_device_ip_resume_phase2 does the following: /* start the ring */ gfx_v9_0_cp_gfx_start(adev); ring->sched.ready = true; The same approach is for other ASICs as well : gfx_v8_0_cp_gfx_resume gfx_v10_0_kiq_resume, etc... As a result, our GPU reset test causes GPU fault which calls unconditionally gfx_v9_0_fault and then drm_sched_fault. However now it depends on whether the interrupt service routine drm_sched_fault is executed after gfx_v9_0_cp_gfx_start is completed which sets the ready field of the scheduler to true even for uninitialized schedulers and causes oops vs no fault or when ISR drm_sched_fault is completed prior gfx_v9_0_cp_gfx_start and NULL pointer dereference does not occur. Use the field timeout_wq to prevent oops for uninitialized schedulers. The field could be initialized by the work queue of resetting the domain. v1: Corrections to commit message (Luben)
CVE-2023-53354 1 Linux 1 Linux Kernel 2025-09-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: skbuff: skb_segment, Call zero copy functions before using skbuff frags Commit bf5c25d60861 ("skbuff: in skb_segment, call zerocopy functions once per nskb") added the call to zero copy functions in skb_segment(). The change introduced a bug in skb_segment() because skb_orphan_frags() may possibly change the number of fragments or allocate new fragments altogether leaving nrfrags and frag to point to the old values. This can cause a panic with stacktrace like the one below. [ 193.894380] BUG: kernel NULL pointer dereference, address: 00000000000000bc [ 193.895273] CPU: 13 PID: 18164 Comm: vh-net-17428 Kdump: loaded Tainted: G O 5.15.123+ #26 [ 193.903919] RIP: 0010:skb_segment+0xb0e/0x12f0 [ 194.021892] Call Trace: [ 194.027422] <TASK> [ 194.072861] tcp_gso_segment+0x107/0x540 [ 194.082031] inet_gso_segment+0x15c/0x3d0 [ 194.090783] skb_mac_gso_segment+0x9f/0x110 [ 194.095016] __skb_gso_segment+0xc1/0x190 [ 194.103131] netem_enqueue+0x290/0xb10 [sch_netem] [ 194.107071] dev_qdisc_enqueue+0x16/0x70 [ 194.110884] __dev_queue_xmit+0x63b/0xb30 [ 194.121670] bond_start_xmit+0x159/0x380 [bonding] [ 194.128506] dev_hard_start_xmit+0xc3/0x1e0 [ 194.131787] __dev_queue_xmit+0x8a0/0xb30 [ 194.138225] macvlan_start_xmit+0x4f/0x100 [macvlan] [ 194.141477] dev_hard_start_xmit+0xc3/0x1e0 [ 194.144622] sch_direct_xmit+0xe3/0x280 [ 194.147748] __dev_queue_xmit+0x54a/0xb30 [ 194.154131] tap_get_user+0x2a8/0x9c0 [tap] [ 194.157358] tap_sendmsg+0x52/0x8e0 [tap] [ 194.167049] handle_tx_zerocopy+0x14e/0x4c0 [vhost_net] [ 194.173631] handle_tx+0xcd/0xe0 [vhost_net] [ 194.176959] vhost_worker+0x76/0xb0 [vhost] [ 194.183667] kthread+0x118/0x140 [ 194.190358] ret_from_fork+0x1f/0x30 [ 194.193670] </TASK> In this case calling skb_orphan_frags() updated nr_frags leaving nrfrags local variable in skb_segment() stale. This resulted in the code hitting i >= nrfrags prematurely and trying to move to next frag_skb using list_skb pointer, which was NULL, and caused kernel panic. Move the call to zero copy functions before using frags and nr_frags.
CVE-2025-10613 1 Itsourcecode 1 Student Information Management System 2025-09-18 6.3 Medium
A vulnerability has been found in itsourcecode Student Information System 1.0. The affected element is an unknown function of the file /leveledit1.php. Such manipulation of the argument level_id leads to sql injection. The attack may be performed from remote. The exploit has been disclosed to the public and may be used.
CVE-2025-10596 2 Online Exam Form Submission Project, Sourcecodester 2 Online Exam Form Submission, Online Exam Form Submission 2025-09-18 7.3 High
A vulnerability was found in SourceCodester Online Exam Form Submission 1.0. This affects an unknown part of the file /index.php. The manipulation of the argument usn results in sql injection. The attack can be launched remotely. The exploit has been made public and could be used.
CVE-2025-10597 1 Kidaze 1 Courseselectionsystem 2025-09-18 7.3 High
A vulnerability was determined in kidaze CourseSelectionSystem up to 42cd892b40a18d50bd4ed1905fa89f939173a464. This vulnerability affects unknown code of the file /Profilers/PriProfile/COUNT2.php. This manipulation of the argument cname causes sql injection. The attack may be initiated remotely. This product uses a rolling release model to deliver continuous updates. As a result, specific version information for affected or updated releases is not available.