CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A flaw has been found in ILIAS up to 8.23/9.13/10.1. Affected by this issue is the function unserialize of the component Test Import. This manipulation causes deserialization. It is possible to initiate the attack remotely. Upgrading to version 8.24, 9.14 and 10.2 can resolve this issue. Upgrading the affected component is advised. |
ssh in OpenSSH before 10.1 allows control characters in usernames that originate from certain possibly untrusted sources, potentially leading to code execution when a ProxyCommand is used. The untrusted sources are the command line and %-sequence expansion of a configuration file. (A configuration file that provides a complete literal username is not categorized as an untrusted source.) |
A vulnerability was detected in jakowenko double-take up to 1.13.1. The impacted element is the function app.use of the file api/src/app.js of the component API. The manipulation of the argument X-Ingress-Path results in cross site scripting. The attack can be executed remotely. Upgrading to version 1.13.2 is sufficient to resolve this issue. The patch is identified as e11de9dd6b4ea6b7ec9a5607a920d48961e9fa50. The affected component should be upgraded. |
Litestar is an Asynchronous Server Gateway Interface (ASGI) framework. In version 2.17.0, rate limits can be completely bypassed by manipulating the X-Forwarded-For header. This renders IP-based rate limiting ineffective against determined attackers. Litestar's RateLimitMiddleware uses `cache_key_from_request()` to generate cache keys for rate limiting. When an X-Forwarded-For header is present, the middleware trusts it unconditionally and uses its value as part of the client identifier. Since clients can set arbitrary X-Forwarded-For values, each different spoofed IP creates a separate rate limit bucket. An attacker can rotate through different header values to avoid hitting any single bucket's limit. This affects any Litestar application using RateLimitMiddleware with default settings, which likely includes most applications that implement rate limiting. Version 2.18.0 contains a patch for the vulnerability. |
The YoSmart YoLink Smart Hub device 0382 exposes a UART debug interface. An attacker with direct physical access can leverage this interface to read a boot log, which includes network access credentials. |
The YoSmart YoLink MQTT broker through 2025-10-02 does not enforce sufficient authorization controls to prevent cross-account attacks, allowing an attacker to remotely operate affected devices if the attacker obtains the associated device IDs. Because YoLink device IDs are predictable, an attacker can exploit this to gain full control over any other YoLink user's devices. |
The YoSmart YoLink Smart Hub firmware 0382 is unencrypted, and data extracted from it can be used to determine network access credentials. |
OS Command Injection vulnerability in EndRun Technologies Sonoma D12 Network Time Server (GPS) F/W 6010-0071-000 Ver 4.00 allows attackers to execute arbitrary code, cause a denial of service, gain escalated privileges, and gain sensitive information. |
Cross Site Scripting (XSS) vulnerability in EndRun Technologies Sonoma D12 Network Time Server (GPS) F/W 6010-0071-000 Ver 4.00 allows attackers to gain sensitive information. |
OS Command Injection vulnerability in EndRun Technologies Sonoma D12 Network Time Server (GPS) F/W 6010-0071-000 Ver 4.00 allows attackers to gain sensitive information, and possibly other unspecified impacts. |
OS Command Injection vulnerability in EndRun Technologies Sonoma D12 Network Time Server (GPS) F/W 6010-0071-000 Ver 4.00 allows attackers to execute arbitrary code, cause a denial of service, gain escalated privileges, gain sensitive information, and possibly other unspecified impacts. |
Bucket is a MediaWiki extension to store and retrieve structured data on articles. Prior to version 1.0.0, infinite recursion can occur if a user queries a bucket using the `!=` comparator. This will result in PHP's call stack limit exceeding, and/or increased memory consumption, potentially leading to a denial of service. Version 1.0.0 contains a patch for the issue. |
KUNO CMS is a fully deployable full-stack blog application. In versions prior to 1.3.15, an SSRF (Server-Side Request Forgery) vulnerability exists in the Media module of the Kuno CMS administrative panel. A logged-in administrator can upload a specially crafted SVG file containing an external image reference, causing the server to initiate an outgoing connection to an arbitrary external URL. This can lead to information disclosure or internal network probing. Version 1.3.15 contains a fix for the issue. |
Rack is a modular Ruby web server interface. In versions prior to 2.2.19, 3.1.17, and 3.2.2, `Rack::Multipart::Parser` can accumulate unbounded data when a multipart part’s header block never terminates with the required blank line (`CRLFCRLF`). The parser keeps appending incoming bytes to memory without a size cap, allowing a remote attacker to exhaust memory and cause a denial of service (DoS). Attackers can send incomplete multipart headers to trigger high memory use, leading to process termination (OOM) or severe slowdown. The effect scales with request size limits and concurrency. All applications handling multipart uploads may be affected. Versions 2.2.19, 3.1.17, and 3.2.2 cap per-part header size (e.g., 64 KiB). As a workaround, restrict maximum request sizes at the proxy or web server layer (e.g., Nginx `client_max_body_size`). |
Akka.NET is a .NET port of the Akka project from the Scala / Java community. In all versions of Akka.Remote from v1.2.0 to v1.5.51, TLS could be enabled via our `akka.remote.dot-netty.tcp` transport and this would correctly enforce private key validation on the server-side of inbound connections. Akka.Remote, however, never asked the outbound-connecting client to present ITS certificate - therefore it's possible for untrusted parties to connect to a private key'd Akka.NET cluster and begin communicating with it without any certificate. The issue here is that for certificate-based authentication to work properly, ensuring that all members of the Akka.Remote network are secured with the same private key, Akka.Remote needed to implement mutual TLS. This was not the case before Akka.NET v1.5.52. Those who run Akka.NET inside a private network that they fully control or who were never using TLS in the first place are now affected by the bug. However, those who use TLS to secure their networks must upgrade to Akka.NET V1.5.52 or later. One patch forces "fail fast" semantics if TLS is enabled but the private key is missing or invalid. Previous versions would only check that once connection attempts occurred. The second patch, a critical fix, enforces mutual TLS (mTLS) by default, so both parties must be keyed using the same certificate. As a workaround, avoid exposing the application publicly to avoid the vulnerability having a practical impact on one's application. However, upgrading to version 1.5.52 is still recommended by the maintainers. |
ssh in OpenSSH before 10.1 allows the '\0' character in an ssh:// URI, potentially leading to code execution when a ProxyCommand is used. |
In the Linux kernel, the following vulnerability has been resolved:
media: i2c: hi846: Fix memory leak in hi846_parse_dt()
If any of the checks related to the supported link frequencies fail, then
the V4L2 fwnode resources don't get released before returning, which leads
to a memleak. Fix this by properly freeing the V4L2 fwnode data in a
designated label. |
In the Linux kernel, the following vulnerability has been resolved:
dm thin: Fix ABBA deadlock between shrink_slab and dm_pool_abort_metadata
Following concurrent processes:
P1(drop cache) P2(kworker)
drop_caches_sysctl_handler
drop_slab
shrink_slab
down_read(&shrinker_rwsem) - LOCK A
do_shrink_slab
super_cache_scan
prune_icache_sb
dispose_list
evict
ext4_evict_inode
ext4_clear_inode
ext4_discard_preallocations
ext4_mb_load_buddy_gfp
ext4_mb_init_cache
ext4_read_block_bitmap_nowait
ext4_read_bh_nowait
submit_bh
dm_submit_bio
do_worker
process_deferred_bios
commit
metadata_operation_failed
dm_pool_abort_metadata
down_write(&pmd->root_lock) - LOCK B
__destroy_persistent_data_objects
dm_block_manager_destroy
dm_bufio_client_destroy
unregister_shrinker
down_write(&shrinker_rwsem)
thin_map |
dm_thin_find_block ↓
down_read(&pmd->root_lock) --> ABBA deadlock
, which triggers hung task:
[ 76.974820] INFO: task kworker/u4:3:63 blocked for more than 15 seconds.
[ 76.976019] Not tainted 6.1.0-rc4-00011-g8f17dd350364-dirty #910
[ 76.978521] task:kworker/u4:3 state:D stack:0 pid:63 ppid:2
[ 76.978534] Workqueue: dm-thin do_worker
[ 76.978552] Call Trace:
[ 76.978564] __schedule+0x6ba/0x10f0
[ 76.978582] schedule+0x9d/0x1e0
[ 76.978588] rwsem_down_write_slowpath+0x587/0xdf0
[ 76.978600] down_write+0xec/0x110
[ 76.978607] unregister_shrinker+0x2c/0xf0
[ 76.978616] dm_bufio_client_destroy+0x116/0x3d0
[ 76.978625] dm_block_manager_destroy+0x19/0x40
[ 76.978629] __destroy_persistent_data_objects+0x5e/0x70
[ 76.978636] dm_pool_abort_metadata+0x8e/0x100
[ 76.978643] metadata_operation_failed+0x86/0x110
[ 76.978649] commit+0x6a/0x230
[ 76.978655] do_worker+0xc6e/0xd90
[ 76.978702] process_one_work+0x269/0x630
[ 76.978714] worker_thread+0x266/0x630
[ 76.978730] kthread+0x151/0x1b0
[ 76.978772] INFO: task test.sh:2646 blocked for more than 15 seconds.
[ 76.979756] Not tainted 6.1.0-rc4-00011-g8f17dd350364-dirty #910
[ 76.982111] task:test.sh state:D stack:0 pid:2646 ppid:2459
[ 76.982128] Call Trace:
[ 76.982139] __schedule+0x6ba/0x10f0
[ 76.982155] schedule+0x9d/0x1e0
[ 76.982159] rwsem_down_read_slowpath+0x4f4/0x910
[ 76.982173] down_read+0x84/0x170
[ 76.982177] dm_thin_find_block+0x4c/0xd0
[ 76.982183] thin_map+0x201/0x3d0
[ 76.982188] __map_bio+0x5b/0x350
[ 76.982195] dm_submit_bio+0x2b6/0x930
[ 76.982202] __submit_bio+0x123/0x2d0
[ 76.982209] submit_bio_noacct_nocheck+0x101/0x3e0
[ 76.982222] submit_bio_noacct+0x389/0x770
[ 76.982227] submit_bio+0x50/0xc0
[ 76.982232] submit_bh_wbc+0x15e/0x230
[ 76.982238] submit_bh+0x14/0x20
[ 76.982241] ext4_read_bh_nowait+0xc5/0x130
[ 76.982247] ext4_read_block_bitmap_nowait+0x340/0xc60
[ 76.982254] ext4_mb_init_cache+0x1ce/0xdc0
[ 76.982259] ext4_mb_load_buddy_gfp+0x987/0xfa0
[ 76.982263] ext4_discard_preallocations+0x45d/0x830
[ 76.982274] ext4_clear_inode+0x48/0xf0
[ 76.982280] ext4_evict_inode+0xcf/0xc70
[ 76.982285] evict+0x119/0x2b0
[ 76.982290] dispose_list+0x43/0xa0
[ 76.982294] prune_icache_sb+0x64/0x90
[ 76.982298] super_cache_scan+0x155/0x210
[ 76.982303] do_shrink_slab+0x19e/0x4e0
[ 76.982310] shrink_slab+0x2bd/0x450
[ 76.982317] drop_slab+0xcc/0x1a0
[ 76.982323] drop_caches_sysctl_handler+0xb7/0xe0
[ 76.982327] proc_sys_call_handler+0x1bc/0x300
[ 76.982331] proc_sys_write+0x17/0x20
[ 76.982334] vfs_write+0x3d3/0x570
[ 76.982342] ksys_write+0x73/0x160
[ 76.982347] __x64_sys_write+0x1e/0x30
[ 76.982352] do_syscall_64+0x35/0x80
[ 76.982357] entry_SYSCALL_64_after_hwframe+0x63/0xcd
Funct
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix potential shift-out-of-bounds in brcmf_fw_alloc_request()
This patch fixes a shift-out-of-bounds in brcmfmac that occurs in
BIT(chiprev) when a 'chiprev' provided by the device is too large.
It should also not be equal to or greater than BITS_PER_TYPE(u32)
as we do bitwise AND with a u32 variable and BIT(chiprev). The patch
adds a check that makes the function return NULL if that is the case.
Note that the NULL case is later handled by the bus-specific caller,
brcmf_usb_probe_cb() or brcmf_usb_reset_resume(), for example.
Found by a modified version of syzkaller.
UBSAN: shift-out-of-bounds in drivers/net/wireless/broadcom/brcm80211/brcmfmac/firmware.c
shift exponent 151055786 is too large for 64-bit type 'long unsigned int'
CPU: 0 PID: 1885 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
Workqueue: usb_hub_wq hub_event
Call Trace:
dump_stack_lvl+0x57/0x7d
ubsan_epilogue+0x5/0x40
__ubsan_handle_shift_out_of_bounds.cold+0x53/0xdb
? lock_chain_count+0x20/0x20
brcmf_fw_alloc_request.cold+0x19/0x3ea
? brcmf_fw_get_firmwares+0x250/0x250
? brcmf_usb_ioctl_resp_wait+0x1a7/0x1f0
brcmf_usb_get_fwname+0x114/0x1a0
? brcmf_usb_reset_resume+0x120/0x120
? number+0x6c4/0x9a0
brcmf_c_process_clm_blob+0x168/0x590
? put_dec+0x90/0x90
? enable_ptr_key_workfn+0x20/0x20
? brcmf_common_pd_remove+0x50/0x50
? rcu_read_lock_sched_held+0xa1/0xd0
brcmf_c_preinit_dcmds+0x673/0xc40
? brcmf_c_set_joinpref_default+0x100/0x100
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lock_acquire+0x19d/0x4e0
? find_held_lock+0x2d/0x110
? brcmf_usb_deq+0x1cc/0x260
? mark_held_locks+0x9f/0xe0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? _raw_spin_unlock_irqrestore+0x47/0x50
? trace_hardirqs_on+0x1c/0x120
? brcmf_usb_deq+0x1a7/0x260
? brcmf_usb_rx_fill_all+0x5a/0xf0
brcmf_attach+0x246/0xd40
? wiphy_new_nm+0x1476/0x1d50
? kmemdup+0x30/0x40
brcmf_usb_probe+0x12de/0x1690
? brcmf_usbdev_qinit.constprop.0+0x470/0x470
usb_probe_interface+0x25f/0x710
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
? usb_match_id.part.0+0x88/0xc0
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
? driver_allows_async_probing+0x120/0x120
bus_for_each_drv+0x123/0x1a0
? bus_rescan_devices+0x20/0x20
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? trace_hardirqs_on+0x1c/0x120
__device_attach+0x207/0x330
? device_bind_driver+0xb0/0xb0
? kobject_uevent_env+0x230/0x12c0
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
? __mutex_unlock_slowpath+0xe7/0x660
? __fw_devlink_link_to_suppliers+0x550/0x550
usb_set_configuration+0x984/0x1770
? kernfs_create_link+0x175/0x230
usb_generic_driver_probe+0x69/0x90
usb_probe_device+0x9c/0x220
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
? driver_allows_async_probing+0x120/0x120
bus_for_each_drv+0x123/0x1a0
? bus_rescan_devices+0x20/0x20
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? trace_hardirqs_on+0x1c/0x120
__device_attach+0x207/0x330
? device_bind_driver+0xb0/0xb0
? kobject_uevent_env+0x230/0x12c0
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
? __fw_devlink_link_to_suppliers+0x550/0x550
usb_new_device.cold+0x463/0xf66
? hub_disconnect+0x400/0x400
? _raw_spin_unlock_irq+0x24/0x30
hub_event+0x10d5/0x3330
? hub_port_debounce+0x280/0x280
? __lock_acquire+0x1671/0x5790
? wq_calc_node_cpumask+0x170/0x2a0
? lock_release+0x640/0x640
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
process_one_work+0x873/0x13e0
? lock_release+0x640/0x640
? pwq_dec_nr_in_flight+0x320/0x320
? rwlock_bug.part.0+0x90/0x90
worker_thread+0x8b/0xd10
? __kthread_parkme+0xd9/0x1d0
? pr
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: avoid double ->queue_rq() because of early timeout
David Jeffery found one double ->queue_rq() issue, so far it can
be triggered in VM use case because of long vmexit latency or preempt
latency of vCPU pthread or long page fault in vCPU pthread, then block
IO req could be timed out before queuing the request to hardware but after
calling blk_mq_start_request() during ->queue_rq(), then timeout handler
may handle it by requeue, then double ->queue_rq() is caused, and kernel
panic.
So far, it is driver's responsibility to cover the race between timeout
and completion, so it seems supposed to be solved in driver in theory,
given driver has enough knowledge.
But it is really one common problem, lots of driver could have similar
issue, and could be hard to fix all affected drivers, even it isn't easy
for driver to handle the race. So David suggests this patch by draining
in-progress ->queue_rq() for solving this issue. |