CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
arm: pgtable: fix NULL pointer dereference issue
When update_mmu_cache_range() is called by update_mmu_cache(), the vmf
parameter is NULL, which will cause a NULL pointer dereference issue in
adjust_pte():
Unable to handle kernel NULL pointer dereference at virtual address 00000030 when read
Hardware name: Atmel AT91SAM9
PC is at update_mmu_cache_range+0x1e0/0x278
LR is at pte_offset_map_rw_nolock+0x18/0x2c
Call trace:
update_mmu_cache_range from remove_migration_pte+0x29c/0x2ec
remove_migration_pte from rmap_walk_file+0xcc/0x130
rmap_walk_file from remove_migration_ptes+0x90/0xa4
remove_migration_ptes from migrate_pages_batch+0x6d4/0x858
migrate_pages_batch from migrate_pages+0x188/0x488
migrate_pages from compact_zone+0x56c/0x954
compact_zone from compact_node+0x90/0xf0
compact_node from kcompactd+0x1d4/0x204
kcompactd from kthread+0x120/0x12c
kthread from ret_from_fork+0x14/0x38
Exception stack(0xc0d8bfb0 to 0xc0d8bff8)
To fix it, do not rely on whether 'ptl' is equal to decide whether to hold
the pte lock, but decide it by whether CONFIG_SPLIT_PTE_PTLOCKS is
enabled. In addition, if two vmas map to the same PTE page, there is no
need to hold the pte lock again, otherwise a deadlock will occur. Just
add the need_lock parameter to let adjust_pte() know this information. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: don't try to talk to a dead firmware
This fixes:
bad state = 0
WARNING: CPU: 10 PID: 702 at drivers/net/wireless/inel/iwlwifi/iwl-trans.c:178 iwl_trans_send_cmd+0xba/0xe0 [iwlwifi]
Call Trace:
<TASK>
? __warn+0xca/0x1c0
? iwl_trans_send_cmd+0xba/0xe0 [iwlwifi 64fa9ad799a0e0d2ba53d4af93a53ad9a531f8d4]
iwl_fw_dbg_clear_monitor_buf+0xd7/0x110 [iwlwifi 64fa9ad799a0e0d2ba53d4af93a53ad9a531f8d4]
_iwl_dbgfs_fw_dbg_clear_write+0xe2/0x120 [iwlmvm 0e8adb18cea92d2c341766bcc10b18699290068a]
Ask whether the firmware is alive before sending a command. |
In the Linux kernel, the following vulnerability has been resolved:
nvme-tcp: fix potential memory corruption in nvme_tcp_recv_pdu()
nvme_tcp_recv_pdu() doesn't check the validity of the header length.
When header digests are enabled, a target might send a packet with an
invalid header length (e.g. 255), causing nvme_tcp_verify_hdgst()
to access memory outside the allocated area and cause memory corruptions
by overwriting it with the calculated digest.
Fix this by rejecting packets with an unexpected header length. |
In the Linux kernel, the following vulnerability has been resolved:
sched/fair: Fix potential memory corruption in child_cfs_rq_on_list
child_cfs_rq_on_list attempts to convert a 'prev' pointer to a cfs_rq.
This 'prev' pointer can originate from struct rq's leaf_cfs_rq_list,
making the conversion invalid and potentially leading to memory
corruption. Depending on the relative positions of leaf_cfs_rq_list and
the task group (tg) pointer within the struct, this can cause a memory
fault or access garbage data.
The issue arises in list_add_leaf_cfs_rq, where both
cfs_rq->leaf_cfs_rq_list and rq->leaf_cfs_rq_list are added to the same
leaf list. Also, rq->tmp_alone_branch can be set to rq->leaf_cfs_rq_list.
This adds a check `if (prev == &rq->leaf_cfs_rq_list)` after the main
conditional in child_cfs_rq_on_list. This ensures that the container_of
operation will convert a correct cfs_rq struct.
This check is sufficient because only cfs_rqs on the same CPU are added
to the list, so verifying the 'prev' pointer against the current rq's list
head is enough.
Fixes a potential memory corruption issue that due to current struct
layout might not be manifesting as a crash but could lead to unpredictable
behavior when the layout changes. |
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: Fix NULL pointer access
Resources should be released only after all threads that utilize them
have been destroyed.
This commit ensures that resources are not released prematurely by waiting
for the associated workqueue to complete before deallocating them. |
In the Linux kernel, the following vulnerability has been resolved:
usb: renesas_usbhs: Flush the notify_hotplug_work
When performing continuous unbind/bind operations on the USB drivers
available on the Renesas RZ/G2L SoC, a kernel crash with the message
"Unable to handle kernel NULL pointer dereference at virtual address"
may occur. This issue points to the usbhsc_notify_hotplug() function.
Flush the delayed work to avoid its execution when driver resources are
unavailable. |
In the Linux kernel, the following vulnerability has been resolved:
drm/imagination: avoid deadlock on fence release
Do scheduler queue fence release processing on a workqueue, rather
than in the release function itself.
Fixes deadlock issues such as the following:
[ 607.400437] ============================================
[ 607.405755] WARNING: possible recursive locking detected
[ 607.415500] --------------------------------------------
[ 607.420817] weston:zfq0/24149 is trying to acquire lock:
[ 607.426131] ffff000017d041a0 (reservation_ww_class_mutex){+.+.}-{3:3}, at: pvr_gem_object_vunmap+0x40/0xc0 [powervr]
[ 607.436728]
but task is already holding lock:
[ 607.442554] ffff000017d105a0 (reservation_ww_class_mutex){+.+.}-{3:3}, at: dma_buf_ioctl+0x250/0x554
[ 607.451727]
other info that might help us debug this:
[ 607.458245] Possible unsafe locking scenario:
[ 607.464155] CPU0
[ 607.466601] ----
[ 607.469044] lock(reservation_ww_class_mutex);
[ 607.473584] lock(reservation_ww_class_mutex);
[ 607.478114]
*** DEADLOCK *** |
In the Linux kernel, the following vulnerability has been resolved:
NFS: fix nfs_release_folio() to not deadlock via kcompactd writeback
Add PF_KCOMPACTD flag and current_is_kcompactd() helper to check for it so
nfs_release_folio() can skip calling nfs_wb_folio() from kcompactd.
Otherwise NFS can deadlock waiting for kcompactd enduced writeback which
recurses back to NFS (which triggers writeback to NFSD via NFS loopback
mount on the same host, NFSD blocks waiting for XFS's call to
__filemap_get_folio):
6070.550357] INFO: task kcompactd0:58 blocked for more than 4435 seconds.
{---
[58] "kcompactd0"
[<0>] folio_wait_bit+0xe8/0x200
[<0>] folio_wait_writeback+0x2b/0x80
[<0>] nfs_wb_folio+0x80/0x1b0 [nfs]
[<0>] nfs_release_folio+0x68/0x130 [nfs]
[<0>] split_huge_page_to_list_to_order+0x362/0x840
[<0>] migrate_pages_batch+0x43d/0xb90
[<0>] migrate_pages_sync+0x9a/0x240
[<0>] migrate_pages+0x93c/0x9f0
[<0>] compact_zone+0x8e2/0x1030
[<0>] compact_node+0xdb/0x120
[<0>] kcompactd+0x121/0x2e0
[<0>] kthread+0xcf/0x100
[<0>] ret_from_fork+0x31/0x40
[<0>] ret_from_fork_asm+0x1a/0x30
---}
[akpm@linux-foundation.org: fix build] |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: limit printed string from FW file
There's no guarantee here that the file is always with a
NUL-termination, so reading the string may read beyond the
end of the TLV. If that's the last TLV in the file, it can
perhaps even read beyond the end of the file buffer.
Fix that by limiting the print format to the size of the
buffer we have. |
In the Linux kernel, the following vulnerability has been resolved:
caif_virtio: fix wrong pointer check in cfv_probe()
del_vqs() frees virtqueues, therefore cfv->vq_tx pointer should be checked
for NULL before calling it, not cfv->vdev. Also the current implementation
is redundant because the pointer cfv->vdev is dereferenced before it is
checked for NULL.
Fix this by checking cfv->vq_tx for NULL instead of cfv->vdev before
calling del_vqs(). |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: Add sanity checks on rdev validity
There is a possibility that ulp_irq_stop and ulp_irq_start
callbacks will be called when the device is in detached state.
This can cause a crash due to NULL pointer dereference as
the rdev is already freed. |
In the Linux kernel, the following vulnerability has been resolved:
ipvlan: ensure network headers are in skb linear part
syzbot found that ipvlan_process_v6_outbound() was assuming
the IPv6 network header isis present in skb->head [1]
Add the needed pskb_network_may_pull() calls for both
IPv4 and IPv6 handlers.
[1]
BUG: KMSAN: uninit-value in __ipv6_addr_type+0xa2/0x490 net/ipv6/addrconf_core.c:47
__ipv6_addr_type+0xa2/0x490 net/ipv6/addrconf_core.c:47
ipv6_addr_type include/net/ipv6.h:555 [inline]
ip6_route_output_flags_noref net/ipv6/route.c:2616 [inline]
ip6_route_output_flags+0x51/0x720 net/ipv6/route.c:2651
ip6_route_output include/net/ip6_route.h:93 [inline]
ipvlan_route_v6_outbound+0x24e/0x520 drivers/net/ipvlan/ipvlan_core.c:476
ipvlan_process_v6_outbound drivers/net/ipvlan/ipvlan_core.c:491 [inline]
ipvlan_process_outbound drivers/net/ipvlan/ipvlan_core.c:541 [inline]
ipvlan_xmit_mode_l3 drivers/net/ipvlan/ipvlan_core.c:605 [inline]
ipvlan_queue_xmit+0xd72/0x1780 drivers/net/ipvlan/ipvlan_core.c:671
ipvlan_start_xmit+0x5b/0x210 drivers/net/ipvlan/ipvlan_main.c:223
__netdev_start_xmit include/linux/netdevice.h:5150 [inline]
netdev_start_xmit include/linux/netdevice.h:5159 [inline]
xmit_one net/core/dev.c:3735 [inline]
dev_hard_start_xmit+0x247/0xa20 net/core/dev.c:3751
sch_direct_xmit+0x399/0xd40 net/sched/sch_generic.c:343
qdisc_restart net/sched/sch_generic.c:408 [inline]
__qdisc_run+0x14da/0x35d0 net/sched/sch_generic.c:416
qdisc_run+0x141/0x4d0 include/net/pkt_sched.h:127
net_tx_action+0x78b/0x940 net/core/dev.c:5484
handle_softirqs+0x1a0/0x7c0 kernel/softirq.c:561
__do_softirq+0x14/0x1a kernel/softirq.c:595
do_softirq+0x9a/0x100 kernel/softirq.c:462
__local_bh_enable_ip+0x9f/0xb0 kernel/softirq.c:389
local_bh_enable include/linux/bottom_half.h:33 [inline]
rcu_read_unlock_bh include/linux/rcupdate.h:919 [inline]
__dev_queue_xmit+0x2758/0x57d0 net/core/dev.c:4611
dev_queue_xmit include/linux/netdevice.h:3311 [inline]
packet_xmit+0x9c/0x6c0 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3132 [inline]
packet_sendmsg+0x93e0/0xa7e0 net/packet/af_packet.c:3164
sock_sendmsg_nosec net/socket.c:718 [inline] |
In the Linux kernel, the following vulnerability has been resolved:
powerpc/code-patching: Fix KASAN hit by not flagging text patching area as VM_ALLOC
Erhard reported the following KASAN hit while booting his PowerMac G4
with a KASAN-enabled kernel 6.13-rc6:
BUG: KASAN: vmalloc-out-of-bounds in copy_to_kernel_nofault+0xd8/0x1c8
Write of size 8 at addr f1000000 by task chronyd/1293
CPU: 0 UID: 123 PID: 1293 Comm: chronyd Tainted: G W 6.13.0-rc6-PMacG4 #2
Tainted: [W]=WARN
Hardware name: PowerMac3,6 7455 0x80010303 PowerMac
Call Trace:
[c2437590] [c1631a84] dump_stack_lvl+0x70/0x8c (unreliable)
[c24375b0] [c0504998] print_report+0xdc/0x504
[c2437610] [c050475c] kasan_report+0xf8/0x108
[c2437690] [c0505a3c] kasan_check_range+0x24/0x18c
[c24376a0] [c03fb5e4] copy_to_kernel_nofault+0xd8/0x1c8
[c24376c0] [c004c014] patch_instructions+0x15c/0x16c
[c2437710] [c00731a8] bpf_arch_text_copy+0x60/0x7c
[c2437730] [c0281168] bpf_jit_binary_pack_finalize+0x50/0xac
[c2437750] [c0073cf4] bpf_int_jit_compile+0xb30/0xdec
[c2437880] [c0280394] bpf_prog_select_runtime+0x15c/0x478
[c24378d0] [c1263428] bpf_prepare_filter+0xbf8/0xc14
[c2437990] [c12677ec] bpf_prog_create_from_user+0x258/0x2b4
[c24379d0] [c027111c] do_seccomp+0x3dc/0x1890
[c2437ac0] [c001d8e0] system_call_exception+0x2dc/0x420
[c2437f30] [c00281ac] ret_from_syscall+0x0/0x2c
--- interrupt: c00 at 0x5a1274
NIP: 005a1274 LR: 006a3b3c CTR: 005296c8
REGS: c2437f40 TRAP: 0c00 Tainted: G W (6.13.0-rc6-PMacG4)
MSR: 0200f932 <VEC,EE,PR,FP,ME,IR,DR,RI> CR: 24004422 XER: 00000000
GPR00: 00000166 af8f3fa0 a7ee3540 00000001 00000000 013b6500 005a5858 0200f932
GPR08: 00000000 00001fe9 013d5fc8 005296c8 2822244c 00b2fcd8 00000000 af8f4b57
GPR16: 00000000 00000001 00000000 00000000 00000000 00000001 00000000 00000002
GPR24: 00afdbb0 00000000 00000000 00000000 006e0004 013ce060 006e7c1c 00000001
NIP [005a1274] 0x5a1274
LR [006a3b3c] 0x6a3b3c
--- interrupt: c00
The buggy address belongs to the virtual mapping at
[f1000000, f1002000) created by:
text_area_cpu_up+0x20/0x190
The buggy address belongs to the physical page:
page: refcount:1 mapcount:0 mapping:00000000 index:0x0 pfn:0x76e30
flags: 0x80000000(zone=2)
raw: 80000000 00000000 00000122 00000000 00000000 00000000 ffffffff 00000001
raw: 00000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
f0ffff00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
f0ffff80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>f1000000: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
^
f1000080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
f1000100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
==================================================================
f8 corresponds to KASAN_VMALLOC_INVALID which means the area is not
initialised hence not supposed to be used yet.
Powerpc text patching infrastructure allocates a virtual memory area
using get_vm_area() and flags it as VM_ALLOC. But that flag is meant
to be used for vmalloc() and vmalloc() allocated memory is not
supposed to be used before a call to __vmalloc_node_range() which is
never called for that area.
That went undetected until commit e4137f08816b ("mm, kasan, kmsan:
instrument copy_from/to_kernel_nofault")
The area allocated by text_area_cpu_up() is not vmalloc memory, it is
mapped directly on demand when needed by map_kernel_page(). There is
no VM flag corresponding to such usage, so just pass no flag. That way
the area will be unpoisonned and usable immediately. |
In the Linux kernel, the following vulnerability has been resolved:
gtp: Suppress list corruption splat in gtp_net_exit_batch_rtnl().
Brad Spengler reported the list_del() corruption splat in
gtp_net_exit_batch_rtnl(). [0]
Commit eb28fd76c0a0 ("gtp: Destroy device along with udp socket's netns
dismantle.") added the for_each_netdev() loop in gtp_net_exit_batch_rtnl()
to destroy devices in each netns as done in geneve and ip tunnels.
However, this could trigger ->dellink() twice for the same device during
->exit_batch_rtnl().
Say we have two netns A & B and gtp device B that resides in netns B but
whose UDP socket is in netns A.
1. cleanup_net() processes netns A and then B.
2. gtp_net_exit_batch_rtnl() finds the device B while iterating
netns A's gn->gtp_dev_list and calls ->dellink().
[ device B is not yet unlinked from netns B
as unregister_netdevice_many() has not been called. ]
3. gtp_net_exit_batch_rtnl() finds the device B while iterating
netns B's for_each_netdev() and calls ->dellink().
gtp_dellink() cleans up the device's hash table, unlinks the dev from
gn->gtp_dev_list, and calls unregister_netdevice_queue().
Basically, calling gtp_dellink() multiple times is fine unless
CONFIG_DEBUG_LIST is enabled.
Let's remove for_each_netdev() in gtp_net_exit_batch_rtnl() and
delegate the destruction to default_device_exit_batch() as done
in bareudp.
[0]:
list_del corruption, ffff8880aaa62c00->next (autoslab_size_M_dev_P_net_core_dev_11127_8_1328_8_S_4096_A_64_n_139+0xc00/0x1000 [slab object]) is LIST_POISON1 (ffffffffffffff02) (prev is 0xffffffffffffff04)
kernel BUG at lib/list_debug.c:58!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 UID: 0 PID: 1804 Comm: kworker/u8:7 Tainted: G T 6.12.13-grsec-full-20250211091339 #1
Tainted: [T]=RANDSTRUCT
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Workqueue: netns cleanup_net
RIP: 0010:[<ffffffff84947381>] __list_del_entry_valid_or_report+0x141/0x200 lib/list_debug.c:58
Code: c2 76 91 31 c0 e8 9f b1 f7 fc 0f 0b 4d 89 f0 48 c7 c1 02 ff ff ff 48 89 ea 48 89 ee 48 c7 c7 e0 c2 76 91 31 c0 e8 7f b1 f7 fc <0f> 0b 4d 89 e8 48 c7 c1 04 ff ff ff 48 89 ea 48 89 ee 48 c7 c7 60
RSP: 0018:fffffe8040b4fbd0 EFLAGS: 00010283
RAX: 00000000000000cc RBX: dffffc0000000000 RCX: ffffffff818c4054
RDX: ffffffff84947381 RSI: ffffffff818d1512 RDI: 0000000000000000
RBP: ffff8880aaa62c00 R08: 0000000000000001 R09: fffffbd008169f32
R10: fffffe8040b4f997 R11: 0000000000000001 R12: a1988d84f24943e4
R13: ffffffffffffff02 R14: ffffffffffffff04 R15: ffff8880aaa62c08
RBX: kasan shadow of 0x0
RCX: __wake_up_klogd.part.0+0x74/0xe0 kernel/printk/printk.c:4554
RDX: __list_del_entry_valid_or_report+0x141/0x200 lib/list_debug.c:58
RSI: vprintk+0x72/0x100 kernel/printk/printk_safe.c:71
RBP: autoslab_size_M_dev_P_net_core_dev_11127_8_1328_8_S_4096_A_64_n_139+0xc00/0x1000 [slab object]
RSP: process kstack fffffe8040b4fbd0+0x7bd0/0x8000 [kworker/u8:7+netns 1804 ]
R09: kasan shadow of process kstack fffffe8040b4f990+0x7990/0x8000 [kworker/u8:7+netns 1804 ]
R10: process kstack fffffe8040b4f997+0x7997/0x8000 [kworker/u8:7+netns 1804 ]
R15: autoslab_size_M_dev_P_net_core_dev_11127_8_1328_8_S_4096_A_64_n_139+0xc08/0x1000 [slab object]
FS: 0000000000000000(0000) GS:ffff888116000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000748f5372c000 CR3: 0000000015408000 CR4: 00000000003406f0 shadow CR4: 00000000003406f0
Stack:
0000000000000000 ffffffff8a0c35e7 ffffffff8a0c3603 ffff8880aaa62c00
ffff8880aaa62c00 0000000000000004 ffff88811145311c 0000000000000005
0000000000000001 ffff8880aaa62000 fffffe8040b4fd40 ffffffff8a0c360d
Call Trace:
<TASK>
[<ffffffff8a0c360d>] __list_del_entry_valid include/linux/list.h:131 [inline] fffffe8040b4fc28
[<ffffffff8a0c360d>] __list_del_entry include/linux/list.h:248 [inline] fffffe8040b4fc28
[<ffffffff8a0c360d>] list_del include/linux/list.h:262 [inl
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
tcp: drop secpath at the same time as we currently drop dst
Xiumei reported hitting the WARN in xfrm6_tunnel_net_exit while
running tests that boil down to:
- create a pair of netns
- run a basic TCP test over ipcomp6
- delete the pair of netns
The xfrm_state found on spi_byaddr was not deleted at the time we
delete the netns, because we still have a reference on it. This
lingering reference comes from a secpath (which holds a ref on the
xfrm_state), which is still attached to an skb. This skb is not
leaked, it ends up on sk_receive_queue and then gets defer-free'd by
skb_attempt_defer_free.
The problem happens when we defer freeing an skb (push it on one CPU's
defer_list), and don't flush that list before the netns is deleted. In
that case, we still have a reference on the xfrm_state that we don't
expect at this point.
We already drop the skb's dst in the TCP receive path when it's no
longer needed, so let's also drop the secpath. At this point,
tcp_filter has already called into the LSM hooks that may require the
secpath, so it should not be needed anymore. However, in some of those
places, the MPTCP extension has just been attached to the skb, so we
cannot simply drop all extensions. |
In the Linux kernel, the following vulnerability has been resolved:
io_uring: prevent opcode speculation
sqe->opcode is used for different tables, make sure we santitise it
against speculations. |
In the Linux kernel, the following vulnerability has been resolved:
drop_monitor: fix incorrect initialization order
Syzkaller reports the following bug:
BUG: spinlock bad magic on CPU#1, syz-executor.0/7995
lock: 0xffff88805303f3e0, .magic: 00000000, .owner: <none>/-1, .owner_cpu: 0
CPU: 1 PID: 7995 Comm: syz-executor.0 Tainted: G E 5.10.209+ #1
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x119/0x179 lib/dump_stack.c:118
debug_spin_lock_before kernel/locking/spinlock_debug.c:83 [inline]
do_raw_spin_lock+0x1f6/0x270 kernel/locking/spinlock_debug.c:112
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:117 [inline]
_raw_spin_lock_irqsave+0x50/0x70 kernel/locking/spinlock.c:159
reset_per_cpu_data+0xe6/0x240 [drop_monitor]
net_dm_cmd_trace+0x43d/0x17a0 [drop_monitor]
genl_family_rcv_msg_doit+0x22f/0x330 net/netlink/genetlink.c:739
genl_family_rcv_msg net/netlink/genetlink.c:783 [inline]
genl_rcv_msg+0x341/0x5a0 net/netlink/genetlink.c:800
netlink_rcv_skb+0x14d/0x440 net/netlink/af_netlink.c:2497
genl_rcv+0x29/0x40 net/netlink/genetlink.c:811
netlink_unicast_kernel net/netlink/af_netlink.c:1322 [inline]
netlink_unicast+0x54b/0x800 net/netlink/af_netlink.c:1348
netlink_sendmsg+0x914/0xe00 net/netlink/af_netlink.c:1916
sock_sendmsg_nosec net/socket.c:651 [inline]
__sock_sendmsg+0x157/0x190 net/socket.c:663
____sys_sendmsg+0x712/0x870 net/socket.c:2378
___sys_sendmsg+0xf8/0x170 net/socket.c:2432
__sys_sendmsg+0xea/0x1b0 net/socket.c:2461
do_syscall_64+0x30/0x40 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x62/0xc7
RIP: 0033:0x7f3f9815aee9
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f3f972bf0c8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f3f9826d050 RCX: 00007f3f9815aee9
RDX: 0000000020000000 RSI: 0000000020001300 RDI: 0000000000000007
RBP: 00007f3f981b63bd R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000006e R14: 00007f3f9826d050 R15: 00007ffe01ee6768
If drop_monitor is built as a kernel module, syzkaller may have time
to send a netlink NET_DM_CMD_START message during the module loading.
This will call the net_dm_monitor_start() function that uses
a spinlock that has not yet been initialized.
To fix this, let's place resource initialization above the registration
of a generic netlink family.
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with Syzkaller. |
In the Linux kernel, the following vulnerability has been resolved:
mm/migrate_device: don't add folio to be freed to LRU in migrate_device_finalize()
If migration succeeded, we called
folio_migrate_flags()->mem_cgroup_migrate() to migrate the memcg from the
old to the new folio. This will set memcg_data of the old folio to 0.
Similarly, if migration failed, memcg_data of the dst folio is left unset.
If we call folio_putback_lru() on such folios (memcg_data == 0), we will
add the folio to be freed to the LRU, making memcg code unhappy. Running
the hmm selftests:
# ./hmm-tests
...
# RUN hmm.hmm_device_private.migrate ...
[ 102.078007][T14893] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x7ff27d200 pfn:0x13cc00
[ 102.079974][T14893] anon flags: 0x17ff00000020018(uptodate|dirty|swapbacked|node=0|zone=2|lastcpupid=0x7ff)
[ 102.082037][T14893] raw: 017ff00000020018 dead000000000100 dead000000000122 ffff8881353896c9
[ 102.083687][T14893] raw: 00000007ff27d200 0000000000000000 00000001ffffffff 0000000000000000
[ 102.085331][T14893] page dumped because: VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled())
[ 102.087230][T14893] ------------[ cut here ]------------
[ 102.088279][T14893] WARNING: CPU: 0 PID: 14893 at ./include/linux/memcontrol.h:726 folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.090478][T14893] Modules linked in:
[ 102.091244][T14893] CPU: 0 UID: 0 PID: 14893 Comm: hmm-tests Not tainted 6.13.0-09623-g6c216bc522fd #151
[ 102.093089][T14893] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
[ 102.094848][T14893] RIP: 0010:folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.096104][T14893] Code: ...
[ 102.099908][T14893] RSP: 0018:ffffc900236c37b0 EFLAGS: 00010293
[ 102.101152][T14893] RAX: 0000000000000000 RBX: ffffea0004f30000 RCX: ffffffff8183f426
[ 102.102684][T14893] RDX: ffff8881063cb880 RSI: ffffffff81b8117f RDI: ffff8881063cb880
[ 102.104227][T14893] RBP: 0000000000000000 R08: 0000000000000005 R09: 0000000000000000
[ 102.105757][T14893] R10: 0000000000000001 R11: 0000000000000002 R12: ffffc900236c37d8
[ 102.107296][T14893] R13: ffff888277a2bcb0 R14: 000000000000001f R15: 0000000000000000
[ 102.108830][T14893] FS: 00007ff27dbdd740(0000) GS:ffff888277a00000(0000) knlGS:0000000000000000
[ 102.110643][T14893] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 102.111924][T14893] CR2: 00007ff27d400000 CR3: 000000010866e000 CR4: 0000000000750ef0
[ 102.113478][T14893] PKRU: 55555554
[ 102.114172][T14893] Call Trace:
[ 102.114805][T14893] <TASK>
[ 102.115397][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.116547][T14893] ? __warn.cold+0x110/0x210
[ 102.117461][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.118667][T14893] ? report_bug+0x1b9/0x320
[ 102.119571][T14893] ? handle_bug+0x54/0x90
[ 102.120494][T14893] ? exc_invalid_op+0x17/0x50
[ 102.121433][T14893] ? asm_exc_invalid_op+0x1a/0x20
[ 102.122435][T14893] ? __wake_up_klogd.part.0+0x76/0xd0
[ 102.123506][T14893] ? dump_page+0x4f/0x60
[ 102.124352][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.125500][T14893] folio_batch_move_lru+0xd4/0x200
[ 102.126577][T14893] ? __pfx_lru_add+0x10/0x10
[ 102.127505][T14893] __folio_batch_add_and_move+0x391/0x720
[ 102.128633][T14893] ? __pfx_lru_add+0x10/0x10
[ 102.129550][T14893] folio_putback_lru+0x16/0x80
[ 102.130564][T14893] migrate_device_finalize+0x9b/0x530
[ 102.131640][T14893] dmirror_migrate_to_device.constprop.0+0x7c5/0xad0
[ 102.133047][T14893] dmirror_fops_unlocked_ioctl+0x89b/0xc80
Likely, nothing else goes wrong: putting the last folio reference will
remove the folio from the LRU again. So besides memcg complaining, adding
the folio to be freed to the LRU is just an unnecessary step.
The new flow resembles what we have in migrate_folio_move(): add the dst
to the lru, rem
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: f_midi: f_midi_complete to call queue_work
When using USB MIDI, a lock is attempted to be acquired twice through a
re-entrant call to f_midi_transmit, causing a deadlock.
Fix it by using queue_work() to schedule the inner f_midi_transmit() via
a high priority work queue from the completion handler. |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: cls_api: fix error handling causing NULL dereference
tcf_exts_miss_cookie_base_alloc() calls xa_alloc_cyclic() which can
return 1 if the allocation succeeded after wrapping. This was treated as
an error, with value 1 returned to caller tcf_exts_init_ex() which sets
exts->actions to NULL and returns 1 to caller fl_change().
fl_change() treats err == 1 as success, calling tcf_exts_validate_ex()
which calls tcf_action_init() with exts->actions as argument, where it
is dereferenced.
Example trace:
BUG: kernel NULL pointer dereference, address: 0000000000000000
CPU: 114 PID: 16151 Comm: handler114 Kdump: loaded Not tainted 5.14.0-503.16.1.el9_5.x86_64 #1
RIP: 0010:tcf_action_init+0x1f8/0x2c0
Call Trace:
tcf_action_init+0x1f8/0x2c0
tcf_exts_validate_ex+0x175/0x190
fl_change+0x537/0x1120 [cls_flower] |