Search

Search Results (320445 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-40218 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/damon/vaddr: do not repeat pte_offset_map_lock() until success DAMON's virtual address space operation set implementation (vaddr) calls pte_offset_map_lock() inside the page table walk callback function. This is for reading and writing page table accessed bits. If pte_offset_map_lock() fails, it retries by returning the page table walk callback function with ACTION_AGAIN. pte_offset_map_lock() can continuously fail if the target is a pmd migration entry, though. Hence it could cause an infinite page table walk if the migration cannot be done until the page table walk is finished. This indeed caused a soft lockup when CPU hotplugging and DAMON were running in parallel. Avoid the infinite loop by simply not retrying the page table walk. DAMON is promising only a best-effort accuracy, so missing access to such pages is no problem.
CVE-2025-40215 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: xfrm: delete x->tunnel as we delete x The ipcomp fallback tunnels currently get deleted (from the various lists and hashtables) as the last user state that needed that fallback is destroyed (not deleted). If a reference to that user state still exists, the fallback state will remain on the hashtables/lists, triggering the WARN in xfrm_state_fini. Because of those remaining references, the fix in commit f75a2804da39 ("xfrm: destroy xfrm_state synchronously on net exit path") is not complete. We recently fixed one such situation in TCP due to defered freeing of skbs (commit 9b6412e6979f ("tcp: drop secpath at the same time as we currently drop dst")). This can also happen due to IP reassembly: skbs with a secpath remain on the reassembly queue until netns destruction. If we can't guarantee that the queues are flushed by the time xfrm_state_fini runs, there may still be references to a (user) xfrm_state, preventing the timely deletion of the corresponding fallback state. Instead of chasing each instance of skbs holding a secpath one by one, this patch fixes the issue directly within xfrm, by deleting the fallback state as soon as the last user state depending on it has been deleted. Destruction will still happen when the final reference is dropped. A separate lockdep class for the fallback state is required since we're going to lock x->tunnel while x is locked.
CVE-2025-40214 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: af_unix: Initialise scc_index in unix_add_edge(). Quang Le reported that the AF_UNIX GC could garbage-collect a receive queue of an alive in-flight socket, with a nice repro. The repro consists of three stages. 1) 1-a. Create a single cyclic reference with many sockets 1-b. close() all sockets 1-c. Trigger GC 2) 2-a. Pass sk-A to an embryo sk-B 2-b. Pass sk-X to sk-X 2-c. Trigger GC 3) 3-a. accept() the embryo sk-B 3-b. Pass sk-B to sk-C 3-c. close() the in-flight sk-A 3-d. Trigger GC As of 2-c, sk-A and sk-X are linked to unix_unvisited_vertices, and unix_walk_scc() groups them into two different SCCs: unix_sk(sk-A)->vertex->scc_index = 2 (UNIX_VERTEX_INDEX_START) unix_sk(sk-X)->vertex->scc_index = 3 Once GC completes, unix_graph_grouped is set to true. Also, unix_graph_maybe_cyclic is set to true due to sk-X's cyclic self-reference, which makes close() trigger GC. At 3-b, unix_add_edge() allocates unix_sk(sk-B)->vertex and links it to unix_unvisited_vertices. unix_update_graph() is called at 3-a. and 3-b., but neither unix_graph_grouped nor unix_graph_maybe_cyclic is changed because both sk-B's listener and sk-C are not in-flight. 3-c decrements sk-A's file refcnt to 1. Since unix_graph_grouped is true at 3-d, unix_walk_scc_fast() is finally called and iterates 3 sockets sk-A, sk-B, and sk-X: sk-A -> sk-B (-> sk-C) sk-X -> sk-X This is totally fine. All of them are not yet close()d and should be grouped into different SCCs. However, unix_vertex_dead() misjudges that sk-A and sk-B are in the same SCC and sk-A is dead. unix_sk(sk-A)->scc_index == unix_sk(sk-B)->scc_index <-- Wrong! && sk-A's file refcnt == unix_sk(sk-A)->vertex->out_degree ^-- 1 in-flight count for sk-B -> sk-A is dead !? The problem is that unix_add_edge() does not initialise scc_index. Stage 1) is used for heap spraying, making a newly allocated vertex have vertex->scc_index == 2 (UNIX_VERTEX_INDEX_START) set by unix_walk_scc() at 1-c. Let's track the max SCC index from the previous unix_walk_scc() call and assign the max + 1 to a new vertex's scc_index. This way, we can continue to avoid Tarjan's algorithm while preventing misjudgments.
CVE-2025-40266 1 Linux 1 Linux Kernel 2025-12-04 N/A
In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Check the untrusted offset in FF-A memory share Verify the offset to prevent OOB access in the hypervisor FF-A buffer in case an untrusted large enough value [U32_MAX - sizeof(struct ffa_composite_mem_region) + 1, U32_MAX] is set from the host kernel.
CVE-2025-40265 1 Linux 1 Linux Kernel 2025-12-04 N/A
In the Linux kernel, the following vulnerability has been resolved: vfat: fix missing sb_min_blocksize() return value checks When emulating an nvme device on qemu with both logical_block_size and physical_block_size set to 8 KiB, but without format, a kernel panic was triggered during the early boot stage while attempting to mount a vfat filesystem. [95553.682035] EXT4-fs (nvme0n1): unable to set blocksize [95553.684326] EXT4-fs (nvme0n1): unable to set blocksize [95553.686501] EXT4-fs (nvme0n1): unable to set blocksize [95553.696448] ISOFS: unsupported/invalid hardware sector size 8192 [95553.697117] ------------[ cut here ]------------ [95553.697567] kernel BUG at fs/buffer.c:1582! [95553.697984] Oops: invalid opcode: 0000 [#1] SMP NOPTI [95553.698602] CPU: 0 UID: 0 PID: 7212 Comm: mount Kdump: loaded Not tainted 6.18.0-rc2+ #38 PREEMPT(voluntary) [95553.699511] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [95553.700534] RIP: 0010:folio_alloc_buffers+0x1bb/0x1c0 [95553.701018] Code: 48 8b 15 e8 93 18 02 65 48 89 35 e0 93 18 02 48 83 c4 10 5b 41 5c 41 5d 41 5e 41 5f 5d 31 d2 31 c9 31 f6 31 ff c3 cc cc cc cc <0f> 0b 90 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f [95553.702648] RSP: 0018:ffffd1b0c676f990 EFLAGS: 00010246 [95553.703132] RAX: ffff8cfc4176d820 RBX: 0000000000508c48 RCX: 0000000000000001 [95553.703805] RDX: 0000000000002000 RSI: 0000000000000000 RDI: 0000000000000000 [95553.704481] RBP: ffffd1b0c676f9c8 R08: 0000000000000000 R09: 0000000000000000 [95553.705148] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001 [95553.705816] R13: 0000000000002000 R14: fffff8bc8257e800 R15: 0000000000000000 [95553.706483] FS: 000072ee77315840(0000) GS:ffff8cfdd2c8d000(0000) knlGS:0000000000000000 [95553.707248] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [95553.707782] CR2: 00007d8f2a9e5a20 CR3: 0000000039d0c006 CR4: 0000000000772ef0 [95553.708439] PKRU: 55555554 [95553.708734] Call Trace: [95553.709015] <TASK> [95553.709266] __getblk_slow+0xd2/0x230 [95553.709641] ? find_get_block_common+0x8b/0x530 [95553.710084] bdev_getblk+0x77/0xa0 [95553.710449] __bread_gfp+0x22/0x140 [95553.710810] fat_fill_super+0x23a/0xfc0 [95553.711216] ? __pfx_setup+0x10/0x10 [95553.711580] ? __pfx_vfat_fill_super+0x10/0x10 [95553.712014] vfat_fill_super+0x15/0x30 [95553.712401] get_tree_bdev_flags+0x141/0x1e0 [95553.712817] get_tree_bdev+0x10/0x20 [95553.713177] vfat_get_tree+0x15/0x20 [95553.713550] vfs_get_tree+0x2a/0x100 [95553.713910] vfs_cmd_create+0x62/0xf0 [95553.714273] __do_sys_fsconfig+0x4e7/0x660 [95553.714669] __x64_sys_fsconfig+0x20/0x40 [95553.715062] x64_sys_call+0x21ee/0x26a0 [95553.715453] do_syscall_64+0x80/0x670 [95553.715816] ? __fs_parse+0x65/0x1e0 [95553.716172] ? fat_parse_param+0x103/0x4b0 [95553.716587] ? vfs_parse_fs_param_source+0x21/0xa0 [95553.717034] ? __do_sys_fsconfig+0x3d9/0x660 [95553.717548] ? __x64_sys_fsconfig+0x20/0x40 [95553.717957] ? x64_sys_call+0x21ee/0x26a0 [95553.718360] ? do_syscall_64+0xb8/0x670 [95553.718734] ? __x64_sys_fsconfig+0x20/0x40 [95553.719141] ? x64_sys_call+0x21ee/0x26a0 [95553.719545] ? do_syscall_64+0xb8/0x670 [95553.719922] ? x64_sys_call+0x1405/0x26a0 [95553.720317] ? do_syscall_64+0xb8/0x670 [95553.720702] ? __x64_sys_close+0x3e/0x90 [95553.721080] ? x64_sys_call+0x1b5e/0x26a0 [95553.721478] ? do_syscall_64+0xb8/0x670 [95553.721841] ? irqentry_exit+0x43/0x50 [95553.722211] ? exc_page_fault+0x90/0x1b0 [95553.722681] entry_SYSCALL_64_after_hwframe+0x76/0x7e [95553.723166] RIP: 0033:0x72ee774f3afe [95553.723562] Code: 73 01 c3 48 8b 0d 0a 33 0f 00 f7 d8 64 89 01 48 83 c8 ff c3 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 49 89 ca b8 af 01 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d da 32 0f 00 f7 d8 64 89 01 48 [95553.725188] RSP: 002b:00007ffe97148978 EFLAGS: 00000246 ORIG_RAX: 00000000000001af [95553.725892] RAX: ffffffffffffffda RBX: ---truncated---
CVE-2025-40264 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: be2net: pass wrb_params in case of OS2BMC be_insert_vlan_in_pkt() is called with the wrb_params argument being NULL at be_send_pkt_to_bmc() call site.  This may lead to dereferencing a NULL pointer when processing a workaround for specific packet, as commit bc0c3405abbb ("be2net: fix a Tx stall bug caused by a specific ipv6 packet") states. The correct way would be to pass the wrb_params from be_xmit().
CVE-2025-40263 1 Linux 1 Linux Kernel 2025-12-04 N/A
In the Linux kernel, the following vulnerability has been resolved: Input: cros_ec_keyb - fix an invalid memory access If cros_ec_keyb_register_matrix() isn't called (due to `buttons_switches_only`) in cros_ec_keyb_probe(), `ckdev->idev` remains NULL. An invalid memory access is observed in cros_ec_keyb_process() when receiving an EC_MKBP_EVENT_KEY_MATRIX event in cros_ec_keyb_work() in such case. Unable to handle kernel read from unreadable memory at virtual address 0000000000000028 ... x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000 Call trace: input_event cros_ec_keyb_work blocking_notifier_call_chain ec_irq_thread It's still unknown about why the kernel receives such malformed event, in any cases, the kernel shouldn't access `ckdev->idev` and friends if the driver doesn't intend to initialize them.
CVE-2025-40262 1 Linux 1 Linux Kernel 2025-12-04 N/A
In the Linux kernel, the following vulnerability has been resolved: Input: imx_sc_key - fix memory corruption on unload This is supposed to be "priv" but we accidentally pass "&priv" which is an address in the stack and so it will lead to memory corruption when the imx_sc_key_action() function is called. Remove the &.
CVE-2025-40256 1 Linux 1 Linux Kernel 2025-12-04 N/A
In the Linux kernel, the following vulnerability has been resolved: xfrm: also call xfrm_state_delete_tunnel at destroy time for states that were never added In commit b441cf3f8c4b ("xfrm: delete x->tunnel as we delete x"), I missed the case where state creation fails between full initialization (->init_state has been called) and being inserted on the lists. In this situation, ->init_state has been called, so for IPcomp tunnels, the fallback tunnel has been created and added onto the lists, but the user state never gets added, because we fail before that. The user state doesn't go through __xfrm_state_delete, so we don't call xfrm_state_delete_tunnel for those states, and we end up leaking the FB tunnel. There are several codepaths affected by this: the add/update paths, in both net/key and xfrm, and the migrate code (xfrm_migrate, xfrm_state_migrate). A "proper" rollback of the init_state work would probably be doable in the add/update code, but for migrate it gets more complicated as multiple states may be involved. At some point, the new (not-inserted) state will be destroyed, so call xfrm_state_delete_tunnel during xfrm_state_gc_destroy. Most states will have their fallback tunnel cleaned up during __xfrm_state_delete, which solves the issue that b441cf3f8c4b (and other patches before it) aimed at. All states (including FB tunnels) will be removed from the lists once xfrm_state_fini has called flush_work(&xfrm_state_gc_work).
CVE-2025-40255 1 Linux 1 Linux Kernel 2025-12-04 N/A
In the Linux kernel, the following vulnerability has been resolved: net: core: prevent NULL deref in generic_hwtstamp_ioctl_lower() The ethtool tsconfig Netlink path can trigger a null pointer dereference. A call chain such as: tsconfig_prepare_data() -> dev_get_hwtstamp_phylib() -> vlan_hwtstamp_get() -> generic_hwtstamp_get_lower() -> generic_hwtstamp_ioctl_lower() results in generic_hwtstamp_ioctl_lower() being called with kernel_cfg->ifr as NULL. The generic_hwtstamp_ioctl_lower() function does not expect a NULL ifr and dereferences it, leading to a system crash. Fix this by adding a NULL check for kernel_cfg->ifr in generic_hwtstamp_ioctl_lower(). If ifr is NULL, return -EINVAL.
CVE-2025-13390 2 Listingthemes, Wordpress 2 Wpdirectory Kit, Wordpress 2025-12-04 10 Critical
The WP Directory Kit plugin for WordPress is vulnerable to authentication bypass in all versions up to, and including, 1.4.4 due to incorrect implementation of the authentication algorithm in the "wdk_generate_auto_login_link" function. This is due to the feature using a cryptographically weak token generation mechanism. This makes it possible for unauthenticated attackers to gain administrative access and achieve full site takeover via the auto-login endpoint with a predictable token.
CVE-2025-12358 4 Elementor, Roxnor, Woocommerce and 1 more 4 Elementor, Shopengine Elementor Woocommerce Builder Addon, Woocommerce and 1 more 2025-12-04 4.3 Medium
The ShopEngine Elementor WooCommerce Builder Addon plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 4.8.5. This is due to missing nonce validation on the "post_add_to_list" function as well as an incorrect permissions callback in the "Api/init" function. This makes it possible for unauthenticated attackers to add or remove products from a user's wishlist via a forged request granted they can trick a site's user into performing an action such as clicking on a link.
CVE-2025-10304 2 Everestthemes, Wordpress 2 Everest Backup, Wordpress 2025-12-04 5.3 Medium
The Everest Backup – WordPress Cloud Backup, Migration, Restore & Cloning Plugin plugin for WordPress is vulnerable to unauthorized access due to a missing capability check on the process_status_unlink() function in all versions up to, and including, 2.3.8. This makes it possible for unauthenticated attackers to delete the back-up progress files and cause a back-up to fail while it is in progress.
CVE-2025-40250 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Clean up only new IRQ glue on request_irq() failure The mlx5_irq_alloc() function can inadvertently free the entire rmap and end up in a crash[1] when the other threads tries to access this, when request_irq() fails due to exhausted IRQ vectors. This commit modifies the cleanup to remove only the specific IRQ mapping that was just added. This prevents removal of other valid mappings and ensures precise cleanup of the failed IRQ allocation's associated glue object. Note: This error is observed when both fwctl and rds configs are enabled. [1] mlx5_core 0000:05:00.0: Successfully registered panic handler for port 1 mlx5_core 0000:05:00.0: mlx5_irq_alloc:293:(pid 66740): Failed to request irq. err = -28 infiniband mlx5_0: mlx5_ib_test_wc:290:(pid 66740): Error -28 while trying to test write-combining support mlx5_core 0000:05:00.0: Successfully unregistered panic handler for port 1 mlx5_core 0000:06:00.0: Successfully registered panic handler for port 1 mlx5_core 0000:06:00.0: mlx5_irq_alloc:293:(pid 66740): Failed to request irq. err = -28 infiniband mlx5_0: mlx5_ib_test_wc:290:(pid 66740): Error -28 while trying to test write-combining support mlx5_core 0000:06:00.0: Successfully unregistered panic handler for port 1 mlx5_core 0000:03:00.0: mlx5_irq_alloc:293:(pid 28895): Failed to request irq. err = -28 mlx5_core 0000:05:00.0: mlx5_irq_alloc:293:(pid 28895): Failed to request irq. err = -28 general protection fault, probably for non-canonical address 0xe277a58fde16f291: 0000 [#1] SMP NOPTI RIP: 0010:free_irq_cpu_rmap+0x23/0x7d Call Trace: <TASK> ? show_trace_log_lvl+0x1d6/0x2f9 ? show_trace_log_lvl+0x1d6/0x2f9 ? mlx5_irq_alloc.cold+0x5d/0xf3 [mlx5_core] ? __die_body.cold+0x8/0xa ? die_addr+0x39/0x53 ? exc_general_protection+0x1c4/0x3e9 ? dev_vprintk_emit+0x5f/0x90 ? asm_exc_general_protection+0x22/0x27 ? free_irq_cpu_rmap+0x23/0x7d mlx5_irq_alloc.cold+0x5d/0xf3 [mlx5_core] irq_pool_request_vector+0x7d/0x90 [mlx5_core] mlx5_irq_request+0x2e/0xe0 [mlx5_core] mlx5_irq_request_vector+0xad/0xf7 [mlx5_core] comp_irq_request_pci+0x64/0xf0 [mlx5_core] create_comp_eq+0x71/0x385 [mlx5_core] ? mlx5e_open_xdpsq+0x11c/0x230 [mlx5_core] mlx5_comp_eqn_get+0x72/0x90 [mlx5_core] ? xas_load+0x8/0x91 mlx5_comp_irqn_get+0x40/0x90 [mlx5_core] mlx5e_open_channel+0x7d/0x3c7 [mlx5_core] mlx5e_open_channels+0xad/0x250 [mlx5_core] mlx5e_open_locked+0x3e/0x110 [mlx5_core] mlx5e_open+0x23/0x70 [mlx5_core] __dev_open+0xf1/0x1a5 __dev_change_flags+0x1e1/0x249 dev_change_flags+0x21/0x5c do_setlink+0x28b/0xcc4 ? __nla_parse+0x22/0x3d ? inet6_validate_link_af+0x6b/0x108 ? cpumask_next+0x1f/0x35 ? __snmp6_fill_stats64.constprop.0+0x66/0x107 ? __nla_validate_parse+0x48/0x1e6 __rtnl_newlink+0x5ff/0xa57 ? kmem_cache_alloc_trace+0x164/0x2ce rtnl_newlink+0x44/0x6e rtnetlink_rcv_msg+0x2bb/0x362 ? __netlink_sendskb+0x4c/0x6c ? netlink_unicast+0x28f/0x2ce ? rtnl_calcit.isra.0+0x150/0x146 netlink_rcv_skb+0x5f/0x112 netlink_unicast+0x213/0x2ce netlink_sendmsg+0x24f/0x4d9 __sock_sendmsg+0x65/0x6a ____sys_sendmsg+0x28f/0x2c9 ? import_iovec+0x17/0x2b ___sys_sendmsg+0x97/0xe0 __sys_sendmsg+0x81/0xd8 do_syscall_64+0x35/0x87 entry_SYSCALL_64_after_hwframe+0x6e/0x0 RIP: 0033:0x7fc328603727 Code: c3 66 90 41 54 41 89 d4 55 48 89 f5 53 89 fb 48 83 ec 10 e8 0b ed ff ff 44 89 e2 48 89 ee 89 df 41 89 c0 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 35 44 89 c7 48 89 44 24 08 e8 44 ed ff ff 48 RSP: 002b:00007ffe8eb3f1a0 EFLAGS: 00000293 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fc328603727 RDX: 0000000000000000 RSI: 00007ffe8eb3f1f0 RDI: 000000000000000d RBP: 00007ffe8eb3f1f0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000 R13: 00000000000 ---truncated---
CVE-2025-40243 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hfs: fix KMSAN uninit-value issue in hfs_find_set_zero_bits() The syzbot reported issue in hfs_find_set_zero_bits(): ===================================================== BUG: KMSAN: uninit-value in hfs_find_set_zero_bits+0x74d/0xb60 fs/hfs/bitmap.c:45 hfs_find_set_zero_bits+0x74d/0xb60 fs/hfs/bitmap.c:45 hfs_vbm_search_free+0x13c/0x5b0 fs/hfs/bitmap.c:151 hfs_extend_file+0x6a5/0x1b00 fs/hfs/extent.c:408 hfs_get_block+0x435/0x1150 fs/hfs/extent.c:353 __block_write_begin_int+0xa76/0x3030 fs/buffer.c:2151 block_write_begin fs/buffer.c:2262 [inline] cont_write_begin+0x10e1/0x1bc0 fs/buffer.c:2601 hfs_write_begin+0x85/0x130 fs/hfs/inode.c:52 cont_expand_zero fs/buffer.c:2528 [inline] cont_write_begin+0x35a/0x1bc0 fs/buffer.c:2591 hfs_write_begin+0x85/0x130 fs/hfs/inode.c:52 hfs_file_truncate+0x1d6/0xe60 fs/hfs/extent.c:494 hfs_inode_setattr+0x964/0xaa0 fs/hfs/inode.c:654 notify_change+0x1993/0x1aa0 fs/attr.c:552 do_truncate+0x28f/0x310 fs/open.c:68 do_ftruncate+0x698/0x730 fs/open.c:195 do_sys_ftruncate fs/open.c:210 [inline] __do_sys_ftruncate fs/open.c:215 [inline] __se_sys_ftruncate fs/open.c:213 [inline] __x64_sys_ftruncate+0x11b/0x250 fs/open.c:213 x64_sys_call+0xfe3/0x3db0 arch/x86/include/generated/asm/syscalls_64.h:78 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd9/0x210 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: slab_post_alloc_hook mm/slub.c:4154 [inline] slab_alloc_node mm/slub.c:4197 [inline] __kmalloc_cache_noprof+0x7f7/0xed0 mm/slub.c:4354 kmalloc_noprof include/linux/slab.h:905 [inline] hfs_mdb_get+0x1cc8/0x2a90 fs/hfs/mdb.c:175 hfs_fill_super+0x3d0/0xb80 fs/hfs/super.c:337 get_tree_bdev_flags+0x6e3/0x920 fs/super.c:1681 get_tree_bdev+0x38/0x50 fs/super.c:1704 hfs_get_tree+0x35/0x40 fs/hfs/super.c:388 vfs_get_tree+0xb0/0x5c0 fs/super.c:1804 do_new_mount+0x738/0x1610 fs/namespace.c:3902 path_mount+0x6db/0x1e90 fs/namespace.c:4226 do_mount fs/namespace.c:4239 [inline] __do_sys_mount fs/namespace.c:4450 [inline] __se_sys_mount+0x6eb/0x7d0 fs/namespace.c:4427 __x64_sys_mount+0xe4/0x150 fs/namespace.c:4427 x64_sys_call+0xfa7/0x3db0 arch/x86/include/generated/asm/syscalls_64.h:166 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd9/0x210 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f CPU: 1 UID: 0 PID: 12609 Comm: syz.1.2692 Not tainted 6.16.0-syzkaller #0 PREEMPT(none) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025 ===================================================== The HFS_SB(sb)->bitmap buffer is allocated in hfs_mdb_get(): HFS_SB(sb)->bitmap = kmalloc(8192, GFP_KERNEL); Finally, it can trigger the reported issue because kmalloc() doesn't clear the allocated memory. If allocated memory contains only zeros, then everything will work pretty fine. But if the allocated memory contains the "garbage", then it can affect the bitmap operations and it triggers the reported issue. This patch simply exchanges the kmalloc() on kzalloc() with the goal to guarantee the correctness of bitmap operations. Because, newly created allocation bitmap should have all available blocks free. Potentially, initialization bitmap's read operation could not fill the whole allocated memory and "garbage" in the not initialized memory will be the reason of volume coruptions and file system driver bugs.
CVE-2025-40261 1 Linux 1 Linux Kernel 2025-12-04 N/A
In the Linux kernel, the following vulnerability has been resolved: nvme: nvme-fc: Ensure ->ioerr_work is cancelled in nvme_fc_delete_ctrl() nvme_fc_delete_assocation() waits for pending I/O to complete before returning, and an error can cause ->ioerr_work to be queued after cancel_work_sync() had been called. Move the call to cancel_work_sync() to be after nvme_fc_delete_association() to ensure ->ioerr_work is not running when the nvme_fc_ctrl object is freed. Otherwise the following can occur: [ 1135.911754] list_del corruption, ff2d24c8093f31f8->next is NULL [ 1135.917705] ------------[ cut here ]------------ [ 1135.922336] kernel BUG at lib/list_debug.c:52! [ 1135.926784] Oops: invalid opcode: 0000 [#1] SMP NOPTI [ 1135.931851] CPU: 48 UID: 0 PID: 726 Comm: kworker/u449:23 Kdump: loaded Not tainted 6.12.0 #1 PREEMPT(voluntary) [ 1135.943490] Hardware name: Dell Inc. PowerEdge R660/0HGTK9, BIOS 2.5.4 01/16/2025 [ 1135.950969] Workqueue: 0x0 (nvme-wq) [ 1135.954673] RIP: 0010:__list_del_entry_valid_or_report.cold+0xf/0x6f [ 1135.961041] Code: c7 c7 98 68 72 94 e8 26 45 fe ff 0f 0b 48 c7 c7 70 68 72 94 e8 18 45 fe ff 0f 0b 48 89 fe 48 c7 c7 80 69 72 94 e8 07 45 fe ff <0f> 0b 48 89 d1 48 c7 c7 a0 6a 72 94 48 89 c2 e8 f3 44 fe ff 0f 0b [ 1135.979788] RSP: 0018:ff579b19482d3e50 EFLAGS: 00010046 [ 1135.985015] RAX: 0000000000000033 RBX: ff2d24c8093f31f0 RCX: 0000000000000000 [ 1135.992148] RDX: 0000000000000000 RSI: ff2d24d6bfa1d0c0 RDI: ff2d24d6bfa1d0c0 [ 1135.999278] RBP: ff2d24c8093f31f8 R08: 0000000000000000 R09: ffffffff951e2b08 [ 1136.006413] R10: ffffffff95122ac8 R11: 0000000000000003 R12: ff2d24c78697c100 [ 1136.013546] R13: fffffffffffffff8 R14: 0000000000000000 R15: ff2d24c78697c0c0 [ 1136.020677] FS: 0000000000000000(0000) GS:ff2d24d6bfa00000(0000) knlGS:0000000000000000 [ 1136.028765] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1136.034510] CR2: 00007fd207f90b80 CR3: 000000163ea22003 CR4: 0000000000f73ef0 [ 1136.041641] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1136.048776] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400 [ 1136.055910] PKRU: 55555554 [ 1136.058623] Call Trace: [ 1136.061074] <TASK> [ 1136.063179] ? show_trace_log_lvl+0x1b0/0x2f0 [ 1136.067540] ? show_trace_log_lvl+0x1b0/0x2f0 [ 1136.071898] ? move_linked_works+0x4a/0xa0 [ 1136.075998] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.081744] ? __die_body.cold+0x8/0x12 [ 1136.085584] ? die+0x2e/0x50 [ 1136.088469] ? do_trap+0xca/0x110 [ 1136.091789] ? do_error_trap+0x65/0x80 [ 1136.095543] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.101289] ? exc_invalid_op+0x50/0x70 [ 1136.105127] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.110874] ? asm_exc_invalid_op+0x1a/0x20 [ 1136.115059] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.120806] move_linked_works+0x4a/0xa0 [ 1136.124733] worker_thread+0x216/0x3a0 [ 1136.128485] ? __pfx_worker_thread+0x10/0x10 [ 1136.132758] kthread+0xfa/0x240 [ 1136.135904] ? __pfx_kthread+0x10/0x10 [ 1136.139657] ret_from_fork+0x31/0x50 [ 1136.143236] ? __pfx_kthread+0x10/0x10 [ 1136.146988] ret_from_fork_asm+0x1a/0x30 [ 1136.150915] </TASK>
CVE-2025-40254 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: openvswitch: remove never-working support for setting nsh fields The validation of the set(nsh(...)) action is completely wrong. It runs through the nsh_key_put_from_nlattr() function that is the same function that validates NSH keys for the flow match and the push_nsh() action. However, the set(nsh(...)) has a very different memory layout. Nested attributes in there are doubled in size in case of the masked set(). That makes proper validation impossible. There is also confusion in the code between the 'masked' flag, that says that the nested attributes are doubled in size containing both the value and the mask, and the 'is_mask' that says that the value we're parsing is the mask. This is causing kernel crash on trying to write into mask part of the match with SW_FLOW_KEY_PUT() during validation, while validate_nsh() doesn't allocate any memory for it: BUG: kernel NULL pointer dereference, address: 0000000000000018 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 1c2383067 P4D 1c2383067 PUD 20b703067 PMD 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 8 UID: 0 Kdump: loaded Not tainted 6.17.0-rc4+ #107 PREEMPT(voluntary) RIP: 0010:nsh_key_put_from_nlattr+0x19d/0x610 [openvswitch] Call Trace: <TASK> validate_nsh+0x60/0x90 [openvswitch] validate_set.constprop.0+0x270/0x3c0 [openvswitch] __ovs_nla_copy_actions+0x477/0x860 [openvswitch] ovs_nla_copy_actions+0x8d/0x100 [openvswitch] ovs_packet_cmd_execute+0x1cc/0x310 [openvswitch] genl_family_rcv_msg_doit+0xdb/0x130 genl_family_rcv_msg+0x14b/0x220 genl_rcv_msg+0x47/0xa0 netlink_rcv_skb+0x53/0x100 genl_rcv+0x24/0x40 netlink_unicast+0x280/0x3b0 netlink_sendmsg+0x1f7/0x430 ____sys_sendmsg+0x36b/0x3a0 ___sys_sendmsg+0x87/0xd0 __sys_sendmsg+0x6d/0xd0 do_syscall_64+0x7b/0x2c0 entry_SYSCALL_64_after_hwframe+0x76/0x7e The third issue with this process is that while trying to convert the non-masked set into masked one, validate_set() copies and doubles the size of the OVS_KEY_ATTR_NSH as if it didn't have any nested attributes. It should be copying each nested attribute and doubling them in size independently. And the process must be properly reversed during the conversion back from masked to a non-masked variant during the flow dump. In the end, the only two outcomes of trying to use this action are either validation failure or a kernel crash. And if somehow someone manages to install a flow with such an action, it will most definitely not do what it is supposed to, since all the keys and the masks are mixed up. Fixing all the issues is a complex task as it requires re-writing most of the validation code. Given that and the fact that this functionality never worked since introduction, let's just remove it altogether. It's better to re-introduce it later with a proper implementation instead of trying to fix it in stable releases.
CVE-2025-40253 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/ctcm: Fix double-kfree The function 'mpc_rcvd_sweep_req(mpcginfo)' is called conditionally from function 'ctcmpc_unpack_skb'. It frees passed mpcginfo. After that a call to function 'kfree' in function 'ctcmpc_unpack_skb' frees it again. Remove 'kfree' call in function 'mpc_rcvd_sweep_req(mpcginfo)'. Bug detected by the clang static analyzer.
CVE-2025-40251 1 Linux 1 Linux Kernel 2025-12-04 N/A
In the Linux kernel, the following vulnerability has been resolved: devlink: rate: Unset parent pointer in devl_rate_nodes_destroy The function devl_rate_nodes_destroy is documented to "Unset parent for all rate objects". However, it was only calling the driver-specific `rate_leaf_parent_set` or `rate_node_parent_set` ops and decrementing the parent's refcount, without actually setting the `devlink_rate->parent` pointer to NULL. This leaves a dangling pointer in the `devlink_rate` struct, which cause refcount error in netdevsim[1] and mlx5[2]. In addition, this is inconsistent with the behavior of `devlink_nl_rate_parent_node_set`, where the parent pointer is correctly cleared. This patch fixes the issue by explicitly setting `devlink_rate->parent` to NULL after notifying the driver, thus fulfilling the function's documented behavior for all rate objects. [1] repro steps: echo 1 > /sys/bus/netdevsim/new_device devlink dev eswitch set netdevsim/netdevsim1 mode switchdev echo 1 > /sys/bus/netdevsim/devices/netdevsim1/sriov_numvfs devlink port function rate add netdevsim/netdevsim1/test_node devlink port function rate set netdevsim/netdevsim1/128 parent test_node echo 1 > /sys/bus/netdevsim/del_device dmesg: refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 8 PID: 1530 at lib/refcount.c:31 refcount_warn_saturate+0x42/0xe0 CPU: 8 UID: 0 PID: 1530 Comm: bash Not tainted 6.18.0-rc4+ #1 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:refcount_warn_saturate+0x42/0xe0 Call Trace: <TASK> devl_rate_leaf_destroy+0x8d/0x90 __nsim_dev_port_del+0x6c/0x70 [netdevsim] nsim_dev_reload_destroy+0x11c/0x140 [netdevsim] nsim_drv_remove+0x2b/0xb0 [netdevsim] device_release_driver_internal+0x194/0x1f0 bus_remove_device+0xc6/0x130 device_del+0x159/0x3c0 device_unregister+0x1a/0x60 del_device_store+0x111/0x170 [netdevsim] kernfs_fop_write_iter+0x12e/0x1e0 vfs_write+0x215/0x3d0 ksys_write+0x5f/0xd0 do_syscall_64+0x55/0x10f0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [2] devlink dev eswitch set pci/0000:08:00.0 mode switchdev devlink port add pci/0000:08:00.0 flavour pcisf pfnum 0 sfnum 1000 devlink port function rate add pci/0000:08:00.0/group1 devlink port function rate set pci/0000:08:00.0/32768 parent group1 modprobe -r mlx5_ib mlx5_fwctl mlx5_core dmesg: refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 7 PID: 16151 at lib/refcount.c:31 refcount_warn_saturate+0x42/0xe0 CPU: 7 UID: 0 PID: 16151 Comm: bash Not tainted 6.17.0-rc7_for_upstream_min_debug_2025_10_02_12_44 #1 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 RIP: 0010:refcount_warn_saturate+0x42/0xe0 Call Trace: <TASK> devl_rate_leaf_destroy+0x8d/0x90 mlx5_esw_offloads_devlink_port_unregister+0x33/0x60 [mlx5_core] mlx5_esw_offloads_unload_rep+0x3f/0x50 [mlx5_core] mlx5_eswitch_unload_sf_vport+0x40/0x90 [mlx5_core] mlx5_sf_esw_event+0xc4/0x120 [mlx5_core] notifier_call_chain+0x33/0xa0 blocking_notifier_call_chain+0x3b/0x50 mlx5_eswitch_disable_locked+0x50/0x110 [mlx5_core] mlx5_eswitch_disable+0x63/0x90 [mlx5_core] mlx5_unload+0x1d/0x170 [mlx5_core] mlx5_uninit_one+0xa2/0x130 [mlx5_core] remove_one+0x78/0xd0 [mlx5_core] pci_device_remove+0x39/0xa0 device_release_driver_internal+0x194/0x1f0 unbind_store+0x99/0xa0 kernfs_fop_write_iter+0x12e/0x1e0 vfs_write+0x215/0x3d0 ksys_write+0x5f/0xd0 do_syscall_64+0x53/0x1f0 entry_SYSCALL_64_after_hwframe+0x4b/0x53
CVE-2025-7044 1 Canonical 1 Maas 2025-12-04 7.7 High
An Improper Input Validation vulnerability exists in the user websocket handler of MAAS. An authenticated, unprivileged attacker can intercept a user.update websocket request and inject the is_superuser property set to true. The server improperly validates this input, allowing the attacker to self-promote to an administrator role. This results in full administrative control over the MAAS deployment.