CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
video/aperture: Call sysfb_disable() before removing PCI devices
Call sysfb_disable() from aperture_remove_conflicting_pci_devices()
before removing PCI devices. Without, simpledrm can still bind to
simple-framebuffer devices after the hardware driver has taken over
the hardware. Both drivers interfere with each other and results are
undefined.
Reported modesetting errors [1] are shown below.
---- snap ----
rcu: INFO: rcu_sched detected expedited stalls on CPUs/tasks: { 13-.... } 7 jiffies s: 165 root: 0x2000/.
rcu: blocking rcu_node structures (internal RCU debug):
Task dump for CPU 13:
task:X state:R running task stack: 0 pid: 4242 ppid: 4228 flags:0x00000008
Call Trace:
<TASK>
? commit_tail+0xd7/0x130
? drm_atomic_helper_commit+0x126/0x150
? drm_atomic_commit+0xa4/0xe0
? drm_plane_get_damage_clips.cold+0x1c/0x1c
? drm_atomic_helper_dirtyfb+0x19e/0x280
? drm_mode_dirtyfb_ioctl+0x10f/0x1e0
? drm_mode_getfb2_ioctl+0x2d0/0x2d0
? drm_ioctl_kernel+0xc4/0x150
? drm_ioctl+0x246/0x3f0
? drm_mode_getfb2_ioctl+0x2d0/0x2d0
? __x64_sys_ioctl+0x91/0xd0
? do_syscall_64+0x60/0xd0
? entry_SYSCALL_64_after_hwframe+0x4b/0xb5
</TASK>
...
rcu: INFO: rcu_sched detected expedited stalls on CPUs/tasks: { 13-.... } 30 jiffies s: 169 root: 0x2000/.
rcu: blocking rcu_node structures (internal RCU debug):
Task dump for CPU 13:
task:X state:R running task stack: 0 pid: 4242 ppid: 4228 flags:0x0000400e
Call Trace:
<TASK>
? memcpy_toio+0x76/0xc0
? memcpy_toio+0x1b/0xc0
? drm_fb_memcpy_toio+0x76/0xb0
? drm_fb_blit_toio+0x75/0x2b0
? simpledrm_simple_display_pipe_update+0x132/0x150
? drm_atomic_helper_commit_planes+0xb6/0x230
? drm_atomic_helper_commit_tail+0x44/0x80
? commit_tail+0xd7/0x130
? drm_atomic_helper_commit+0x126/0x150
? drm_atomic_commit+0xa4/0xe0
? drm_plane_get_damage_clips.cold+0x1c/0x1c
? drm_atomic_helper_dirtyfb+0x19e/0x280
? drm_mode_dirtyfb_ioctl+0x10f/0x1e0
? drm_mode_getfb2_ioctl+0x2d0/0x2d0
? drm_ioctl_kernel+0xc4/0x150
? drm_ioctl+0x246/0x3f0
? drm_mode_getfb2_ioctl+0x2d0/0x2d0
? __x64_sys_ioctl+0x91/0xd0
? do_syscall_64+0x60/0xd0
? entry_SYSCALL_64_after_hwframe+0x4b/0xb5
</TASK>
The problem was added by commit 5e0137612430 ("video/aperture: Disable
and unregister sysfb devices via aperture helpers") to v6.0.3 and does
not exist in the mainline branch.
The mainline commit 5e0137612430 ("video/aperture: Disable and
unregister sysfb devices via aperture helpers") has been backported
from v6.0-rc1 to stable v6.0.3 from a larger patch series [2] that
reworks fbdev framebuffer ownership. The backport misses a change to
aperture_remove_conflicting_pci_devices(). Mainline itself is fine,
because the function does not exist there as a result of the patch
series.
Instead of backporting the whole series, fix the additional function. |
In the Linux kernel, the following vulnerability has been resolved:
orangefs: Fix kmemleak in orangefs_sysfs_init()
When insert and remove the orangefs module, there are kobjects memory
leaked as below:
unreferenced object 0xffff88810f95af00 (size 64):
comm "insmod", pid 783, jiffies 4294813439 (age 65.512s)
hex dump (first 32 bytes):
a0 83 af 01 81 88 ff ff 08 af 95 0f 81 88 ff ff ................
08 af 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000031ab7788>] kmalloc_trace+0x27/0xa0
[<000000005a6e4dfe>] orangefs_sysfs_init+0x42/0x3a0
[<00000000722645ca>] 0xffffffffa02780fe
[<000000004232d9f7>] do_one_initcall+0x87/0x2a0
[<0000000054f22384>] do_init_module+0xdf/0x320
[<000000003263bdea>] load_module+0x2f98/0x3330
[<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0
[<00000000250ae02b>] do_syscall_64+0x35/0x80
[<00000000f11c03c7>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
unreferenced object 0xffff88810f95ae80 (size 64):
comm "insmod", pid 783, jiffies 4294813439 (age 65.512s)
hex dump (first 32 bytes):
c8 90 0f 02 81 88 ff ff 88 ae 95 0f 81 88 ff ff ................
88 ae 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000031ab7788>] kmalloc_trace+0x27/0xa0
[<000000001a4841fa>] orangefs_sysfs_init+0xc7/0x3a0
[<00000000722645ca>] 0xffffffffa02780fe
[<000000004232d9f7>] do_one_initcall+0x87/0x2a0
[<0000000054f22384>] do_init_module+0xdf/0x320
[<000000003263bdea>] load_module+0x2f98/0x3330
[<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0
[<00000000250ae02b>] do_syscall_64+0x35/0x80
[<00000000f11c03c7>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
unreferenced object 0xffff88810f95ae00 (size 64):
comm "insmod", pid 783, jiffies 4294813440 (age 65.511s)
hex dump (first 32 bytes):
60 87 a1 00 81 88 ff ff 08 ae 95 0f 81 88 ff ff `...............
08 ae 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000031ab7788>] kmalloc_trace+0x27/0xa0
[<000000005915e797>] orangefs_sysfs_init+0x12b/0x3a0
[<00000000722645ca>] 0xffffffffa02780fe
[<000000004232d9f7>] do_one_initcall+0x87/0x2a0
[<0000000054f22384>] do_init_module+0xdf/0x320
[<000000003263bdea>] load_module+0x2f98/0x3330
[<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0
[<00000000250ae02b>] do_syscall_64+0x35/0x80
[<00000000f11c03c7>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
unreferenced object 0xffff88810f95ad80 (size 64):
comm "insmod", pid 783, jiffies 4294813440 (age 65.511s)
hex dump (first 32 bytes):
78 90 0f 02 81 88 ff ff 88 ad 95 0f 81 88 ff ff x...............
88 ad 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000031ab7788>] kmalloc_trace+0x27/0xa0
[<000000007a14eb35>] orangefs_sysfs_init+0x1ac/0x3a0
[<00000000722645ca>] 0xffffffffa02780fe
[<000000004232d9f7>] do_one_initcall+0x87/0x2a0
[<0000000054f22384>] do_init_module+0xdf/0x320
[<000000003263bdea>] load_module+0x2f98/0x3330
[<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0
[<00000000250ae02b>] do_syscall_64+0x35/0x80
[<00000000f11c03c7>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
unreferenced object 0xffff88810f95ac00 (size 64):
comm "insmod", pid 783, jiffies 4294813440 (age 65.531s)
hex dump (first 32 bytes):
e0 ff 67 02 81 88 ff ff 08 ac 95 0f 81 88 ff ff ..g.............
08 ac 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000031ab7788>] kmalloc_trace+0x27/0xa0
[<000000001f38adcb>] orangefs_sysfs_init+0x291/0x3a0
[<00000000722645ca>] 0xffffffffa02780fe
[<000000004232d9f7>] do_one_initcall+0x87/0x2a0
[<0000000054f22384>] do_init_module+0xdf/0x320
[<000000003263bdea>] load_module+0x2f98/0x3330
[<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0
[<00000000250ae02b>] do_syscall_64+0x35/
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
coresight: trbe: remove cpuhp instance node before remove cpuhp state
cpuhp_state_add_instance() and cpuhp_state_remove_instance() should
be used in pairs. Or there will lead to the warn on
cpuhp_remove_multi_state() since the cpuhp_step list is not empty.
The following is the error log with 'rmmod coresight-trbe':
Error: Removing state 215 which has instances left.
Call trace:
__cpuhp_remove_state_cpuslocked+0x144/0x160
__cpuhp_remove_state+0xac/0x100
arm_trbe_device_remove+0x2c/0x60 [coresight_trbe]
platform_remove+0x34/0x70
device_remove+0x54/0x90
device_release_driver_internal+0x1e4/0x250
driver_detach+0x5c/0xb0
bus_remove_driver+0x64/0xc0
driver_unregister+0x3c/0x70
platform_driver_unregister+0x20/0x30
arm_trbe_exit+0x1c/0x658 [coresight_trbe]
__arm64_sys_delete_module+0x1ac/0x24c
invoke_syscall+0x50/0x120
el0_svc_common.constprop.0+0x58/0x1a0
do_el0_svc+0x38/0xd0
el0_svc+0x2c/0xc0
el0t_64_sync_handler+0x1ac/0x1b0
el0t_64_sync+0x19c/0x1a0
---[ end trace 0000000000000000 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
block, bfq: fix uaf for bfqq in bfq_exit_icq_bfqq
Commit 64dc8c732f5c ("block, bfq: fix possible uaf for 'bfqq->bic'")
will access 'bic->bfqq' in bic_set_bfqq(), however, bfq_exit_icq_bfqq()
can free bfqq first, and then call bic_set_bfqq(), which will cause uaf.
Fix the problem by moving bfq_exit_bfqq() behind bic_set_bfqq(). |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: avs: Fix potential RX buffer overflow
If an event caused firmware to return invalid RX size for
LARGE_CONFIG_GET, memcpy_fromio() could end up copying too many bytes.
Fix by utilizing min_t(). |
In the Linux kernel, the following vulnerability has been resolved:
media: airspy: fix memory leak in airspy probe
The commit ca9dc8d06ab6 ("media: airspy: respect the DMA coherency
rules") moves variable buf from stack to heap, however, it only frees
buf in the error handling code, missing deallocation in the success
path.
Fix this by freeing buf in the success path since this variable does not
have any references in other code. |
In the Linux kernel, the following vulnerability has been resolved:
mtd: maps: pxa2xx-flash: fix memory leak in probe
Free 'info' upon remapping error to avoid a memory leak.
[<miquel.raynal@bootlin.com>: Reword the commit log] |
In the Linux kernel, the following vulnerability has been resolved:
binder: fix UAF of alloc->vma in race with munmap()
In commit 720c24192404 ("ANDROID: binder: change down_write to
down_read") binder assumed the mmap read lock is sufficient to protect
alloc->vma inside binder_update_page_range(). This used to be accurate
until commit dd2283f2605e ("mm: mmap: zap pages with read mmap_sem in
munmap"), which now downgrades the mmap_lock after detaching the vma
from the rbtree in munmap(). Then it proceeds to teardown and free the
vma with only the read lock held.
This means that accesses to alloc->vma in binder_update_page_range() now
will race with vm_area_free() in munmap() and can cause a UAF as shown
in the following KASAN trace:
==================================================================
BUG: KASAN: use-after-free in vm_insert_page+0x7c/0x1f0
Read of size 8 at addr ffff16204ad00600 by task server/558
CPU: 3 PID: 558 Comm: server Not tainted 5.10.150-00001-gdc8dcf942daa #1
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x2a0
show_stack+0x18/0x2c
dump_stack+0xf8/0x164
print_address_description.constprop.0+0x9c/0x538
kasan_report+0x120/0x200
__asan_load8+0xa0/0xc4
vm_insert_page+0x7c/0x1f0
binder_update_page_range+0x278/0x50c
binder_alloc_new_buf+0x3f0/0xba0
binder_transaction+0x64c/0x3040
binder_thread_write+0x924/0x2020
binder_ioctl+0x1610/0x2e5c
__arm64_sys_ioctl+0xd4/0x120
el0_svc_common.constprop.0+0xac/0x270
do_el0_svc+0x38/0xa0
el0_svc+0x1c/0x2c
el0_sync_handler+0xe8/0x114
el0_sync+0x180/0x1c0
Allocated by task 559:
kasan_save_stack+0x38/0x6c
__kasan_kmalloc.constprop.0+0xe4/0xf0
kasan_slab_alloc+0x18/0x2c
kmem_cache_alloc+0x1b0/0x2d0
vm_area_alloc+0x28/0x94
mmap_region+0x378/0x920
do_mmap+0x3f0/0x600
vm_mmap_pgoff+0x150/0x17c
ksys_mmap_pgoff+0x284/0x2dc
__arm64_sys_mmap+0x84/0xa4
el0_svc_common.constprop.0+0xac/0x270
do_el0_svc+0x38/0xa0
el0_svc+0x1c/0x2c
el0_sync_handler+0xe8/0x114
el0_sync+0x180/0x1c0
Freed by task 560:
kasan_save_stack+0x38/0x6c
kasan_set_track+0x28/0x40
kasan_set_free_info+0x24/0x4c
__kasan_slab_free+0x100/0x164
kasan_slab_free+0x14/0x20
kmem_cache_free+0xc4/0x34c
vm_area_free+0x1c/0x2c
remove_vma+0x7c/0x94
__do_munmap+0x358/0x710
__vm_munmap+0xbc/0x130
__arm64_sys_munmap+0x4c/0x64
el0_svc_common.constprop.0+0xac/0x270
do_el0_svc+0x38/0xa0
el0_svc+0x1c/0x2c
el0_sync_handler+0xe8/0x114
el0_sync+0x180/0x1c0
[...]
==================================================================
To prevent the race above, revert back to taking the mmap write lock
inside binder_update_page_range(). One might expect an increase of mmap
lock contention. However, binder already serializes these calls via top
level alloc->mutex. Also, there was no performance impact shown when
running the binder benchmark tests.
Note this patch is specific to stable branches 5.4 and 5.10. Since in
newer kernel releases binder no longer caches a pointer to the vma.
Instead, it has been refactored to use vma_lookup() which avoids the
issue described here. This switch was introduced in commit a43cfc87caaf
("android: binder: stop saving a pointer to the VMA"). |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix scheduling while atomic in decompression path
[ 16.945668][ C0] Call trace:
[ 16.945678][ C0] dump_backtrace+0x110/0x204
[ 16.945706][ C0] dump_stack_lvl+0x84/0xbc
[ 16.945735][ C0] __schedule_bug+0xb8/0x1ac
[ 16.945756][ C0] __schedule+0x724/0xbdc
[ 16.945778][ C0] schedule+0x154/0x258
[ 16.945793][ C0] bit_wait_io+0x48/0xa4
[ 16.945808][ C0] out_of_line_wait_on_bit+0x114/0x198
[ 16.945824][ C0] __sync_dirty_buffer+0x1f8/0x2e8
[ 16.945853][ C0] __f2fs_commit_super+0x140/0x1f4
[ 16.945881][ C0] f2fs_commit_super+0x110/0x28c
[ 16.945898][ C0] f2fs_handle_error+0x1f4/0x2f4
[ 16.945917][ C0] f2fs_decompress_cluster+0xc4/0x450
[ 16.945942][ C0] f2fs_end_read_compressed_page+0xc0/0xfc
[ 16.945959][ C0] f2fs_handle_step_decompress+0x118/0x1cc
[ 16.945978][ C0] f2fs_read_end_io+0x168/0x2b0
[ 16.945993][ C0] bio_endio+0x25c/0x2c8
[ 16.946015][ C0] dm_io_dec_pending+0x3e8/0x57c
[ 16.946052][ C0] clone_endio+0x134/0x254
[ 16.946069][ C0] bio_endio+0x25c/0x2c8
[ 16.946084][ C0] blk_update_request+0x1d4/0x478
[ 16.946103][ C0] scsi_end_request+0x38/0x4cc
[ 16.946129][ C0] scsi_io_completion+0x94/0x184
[ 16.946147][ C0] scsi_finish_command+0xe8/0x154
[ 16.946164][ C0] scsi_complete+0x90/0x1d8
[ 16.946181][ C0] blk_done_softirq+0xa4/0x11c
[ 16.946198][ C0] _stext+0x184/0x614
[ 16.946214][ C0] __irq_exit_rcu+0x78/0x144
[ 16.946234][ C0] handle_domain_irq+0xd4/0x154
[ 16.946260][ C0] gic_handle_irq.33881+0x5c/0x27c
[ 16.946281][ C0] call_on_irq_stack+0x40/0x70
[ 16.946298][ C0] do_interrupt_handler+0x48/0xa4
[ 16.946313][ C0] el1_interrupt+0x38/0x68
[ 16.946346][ C0] el1h_64_irq_handler+0x20/0x30
[ 16.946362][ C0] el1h_64_irq+0x78/0x7c
[ 16.946377][ C0] finish_task_switch+0xc8/0x3d8
[ 16.946394][ C0] __schedule+0x600/0xbdc
[ 16.946408][ C0] preempt_schedule_common+0x34/0x5c
[ 16.946423][ C0] preempt_schedule+0x44/0x48
[ 16.946438][ C0] process_one_work+0x30c/0x550
[ 16.946456][ C0] worker_thread+0x414/0x8bc
[ 16.946472][ C0] kthread+0x16c/0x1e0
[ 16.946486][ C0] ret_from_fork+0x10/0x20 |
In the Linux kernel, the following vulnerability has been resolved:
perf/x86/intel/uncore: Fix reference count leak in hswep_has_limit_sbox()
pci_get_device() will increase the reference count for the returned
'dev'. We need to call pci_dev_put() to decrease the reference count.
Since 'dev' is only used in pci_read_config_dword(), let's add
pci_dev_put() right after it. |
In the Linux kernel, the following vulnerability has been resolved:
jbd2: fix potential use-after-free in jbd2_fc_wait_bufs
In 'jbd2_fc_wait_bufs' use 'bh' after put buffer head reference count
which may lead to use-after-free.
So judge buffer if uptodate before put buffer head reference count. |
In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_ffa: Fix FFA device names for logical partitions
Each physical partition can provide multiple services each with UUID.
Each such service can be presented as logical partition with a unique
combination of VM ID and UUID. The number of distinct UUID in a system
will be less than or equal to the number of logical partitions.
However, currently it fails to register more than one logical partition
or service within a physical partition as the device name contains only
VM ID while both VM ID and UUID are maintained in the partition information.
The kernel complains with the below message:
| sysfs: cannot create duplicate filename '/devices/arm-ffa-8001'
| CPU: 1 PID: 1 Comm: swapper/0 Not tainted 6.3.0-rc7 #8
| Hardware name: FVP Base RevC (DT)
| Call trace:
| dump_backtrace+0xf8/0x118
| show_stack+0x18/0x24
| dump_stack_lvl+0x50/0x68
| dump_stack+0x18/0x24
| sysfs_create_dir_ns+0xe0/0x13c
| kobject_add_internal+0x220/0x3d4
| kobject_add+0x94/0x100
| device_add+0x144/0x5d8
| device_register+0x20/0x30
| ffa_device_register+0x88/0xd8
| ffa_setup_partitions+0x108/0x1b8
| ffa_init+0x2ec/0x3a4
| do_one_initcall+0xcc/0x240
| do_initcall_level+0x8c/0xac
| do_initcalls+0x54/0x94
| do_basic_setup+0x1c/0x28
| kernel_init_freeable+0x100/0x16c
| kernel_init+0x20/0x1a0
| ret_from_fork+0x10/0x20
| kobject_add_internal failed for arm-ffa-8001 with -EEXIST, don't try to
| register things with the same name in the same directory.
| arm_ffa arm-ffa: unable to register device arm-ffa-8001 err=-17
| ARM FF-A: ffa_setup_partitions: failed to register partition ID 0x8001
By virtue of being random enough to avoid collisions when generated in a
distributed system, there is no way to compress UUID keys to the number
of bits required to identify each. We can eliminate '-' in the name but
it is not worth eliminating 4 bytes and add unnecessary logic for doing
that. Also v1.0 doesn't provide the UUID of the partitions which makes
it hard to use the same for the device name.
So to keep it simple, let us alloc an ID using ida_alloc() and append the
same to "arm-ffa" to make up a unique device name. Also stash the id value
in ffa_dev to help freeing the ID later when the device is destroyed. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix potential memory leak in brcmf_netdev_start_xmit()
The brcmf_netdev_start_xmit() returns NETDEV_TX_OK without freeing skb
in case of pskb_expand_head() fails, add dev_kfree_skb() to fix it.
Compile tested only. |
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Add null pointer check to attr_load_runs_vcn
Some metadata files are handled before MFT. This adds a null pointer
check for some corner cases that could lead to NPD while reading these
metadata files for a malformed NTFS image.
[ 240.190827] BUG: kernel NULL pointer dereference, address: 0000000000000158
[ 240.191583] #PF: supervisor read access in kernel mode
[ 240.191956] #PF: error_code(0x0000) - not-present page
[ 240.192391] PGD 0 P4D 0
[ 240.192897] Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI
[ 240.193805] CPU: 0 PID: 242 Comm: mount Tainted: G B 5.19.0+ #17
[ 240.194477] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 240.195152] RIP: 0010:ni_find_attr+0xae/0x300
[ 240.195679] Code: c8 48 c7 45 88 c0 4e 5e 86 c7 00 f1 f1 f1 f1 c7 40 04 00 f3 f3 f3 65 48 8b 04 25 28 00 00 00 48 89 45 d0 31 c0 e8 e2 d9f
[ 240.196642] RSP: 0018:ffff88800812f690 EFLAGS: 00000286
[ 240.197019] RAX: 0000000000000001 RBX: 0000000000000000 RCX: ffffffff85ef037a
[ 240.197523] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffff88e95f60
[ 240.197877] RBP: ffff88800812f738 R08: 0000000000000001 R09: fffffbfff11d2bed
[ 240.198292] R10: ffffffff88e95f67 R11: fffffbfff11d2bec R12: 0000000000000000
[ 240.198647] R13: 0000000000000080 R14: 0000000000000000 R15: 0000000000000000
[ 240.199410] FS: 00007f233c33be40(0000) GS:ffff888058200000(0000) knlGS:0000000000000000
[ 240.199895] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 240.200314] CR2: 0000000000000158 CR3: 0000000004d32000 CR4: 00000000000006f0
[ 240.200839] Call Trace:
[ 240.201104] <TASK>
[ 240.201502] ? ni_load_mi+0x80/0x80
[ 240.202297] ? ___slab_alloc+0x465/0x830
[ 240.202614] attr_load_runs_vcn+0x8c/0x1a0
[ 240.202886] ? __kasan_slab_alloc+0x32/0x90
[ 240.203157] ? attr_data_write_resident+0x250/0x250
[ 240.203543] mi_read+0x133/0x2c0
[ 240.203785] mi_get+0x70/0x140
[ 240.204012] ni_load_mi_ex+0xfa/0x190
[ 240.204346] ? ni_std5+0x90/0x90
[ 240.204588] ? __kasan_kmalloc+0x88/0xb0
[ 240.204859] ni_enum_attr_ex+0xf1/0x1c0
[ 240.205107] ? ni_fname_type.part.0+0xd0/0xd0
[ 240.205600] ? ntfs_load_attr_list+0xbe/0x300
[ 240.205864] ? ntfs_cmp_names_cpu+0x125/0x180
[ 240.206157] ntfs_iget5+0x56c/0x1870
[ 240.206510] ? ntfs_get_block_bmap+0x70/0x70
[ 240.206776] ? __kasan_kmalloc+0x88/0xb0
[ 240.207030] ? set_blocksize+0x95/0x150
[ 240.207545] ntfs_fill_super+0xb8f/0x1e20
[ 240.207839] ? put_ntfs+0x1d0/0x1d0
[ 240.208069] ? vsprintf+0x20/0x20
[ 240.208467] ? mutex_unlock+0x81/0xd0
[ 240.208846] ? set_blocksize+0x95/0x150
[ 240.209221] get_tree_bdev+0x232/0x370
[ 240.209804] ? put_ntfs+0x1d0/0x1d0
[ 240.210519] ntfs_fs_get_tree+0x15/0x20
[ 240.210991] vfs_get_tree+0x4c/0x130
[ 240.211455] path_mount+0x645/0xfd0
[ 240.211806] ? putname+0x80/0xa0
[ 240.212112] ? finish_automount+0x2e0/0x2e0
[ 240.212559] ? kmem_cache_free+0x110/0x390
[ 240.212906] ? putname+0x80/0xa0
[ 240.213329] do_mount+0xd6/0xf0
[ 240.213829] ? path_mount+0xfd0/0xfd0
[ 240.214246] ? __kasan_check_write+0x14/0x20
[ 240.214774] __x64_sys_mount+0xca/0x110
[ 240.215080] do_syscall_64+0x3b/0x90
[ 240.215442] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 240.215811] RIP: 0033:0x7f233b4e948a
[ 240.216104] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[ 240.217615] RSP: 002b:00007fff02211ec8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5
[ 240.218718] RAX: ffffffffffffffda RBX: 0000561cdc35b060 RCX: 00007f233b4e948a
[ 240.219556] RDX: 0000561cdc35b260 RSI: 0000561cdc35b2e0 RDI: 0000561cdc363af0
[ 240.219975] RBP: 0000000000000000 R08: 0000561cdc35b280 R09: 0000000000000020
[ 240.220403] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 0000561cdc363af0
[ 240.220803] R13: 000
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
net: do not sense pfmemalloc status in skb_append_pagefrags()
skb_append_pagefrags() is used by af_unix and udp sendpage()
implementation so far.
In commit 326140063946 ("tcp: TX zerocopy should not sense
pfmemalloc status") we explained why we should not sense
pfmemalloc status for pages owned by user space.
We should also use skb_fill_page_desc_noacc()
in skb_append_pagefrags() to avoid following KCSAN report:
BUG: KCSAN: data-race in lru_add_fn / skb_append_pagefrags
write to 0xffffea00058fc1c8 of 8 bytes by task 17319 on cpu 0:
__list_add include/linux/list.h:73 [inline]
list_add include/linux/list.h:88 [inline]
lruvec_add_folio include/linux/mm_inline.h:323 [inline]
lru_add_fn+0x327/0x410 mm/swap.c:228
folio_batch_move_lru+0x1e1/0x2a0 mm/swap.c:246
lru_add_drain_cpu+0x73/0x250 mm/swap.c:669
lru_add_drain+0x21/0x60 mm/swap.c:773
free_pages_and_swap_cache+0x16/0x70 mm/swap_state.c:311
tlb_batch_pages_flush mm/mmu_gather.c:59 [inline]
tlb_flush_mmu_free mm/mmu_gather.c:256 [inline]
tlb_flush_mmu+0x5b2/0x640 mm/mmu_gather.c:263
tlb_finish_mmu+0x86/0x100 mm/mmu_gather.c:363
exit_mmap+0x190/0x4d0 mm/mmap.c:3098
__mmput+0x27/0x1b0 kernel/fork.c:1185
mmput+0x3d/0x50 kernel/fork.c:1207
copy_process+0x19fc/0x2100 kernel/fork.c:2518
kernel_clone+0x166/0x550 kernel/fork.c:2671
__do_sys_clone kernel/fork.c:2812 [inline]
__se_sys_clone kernel/fork.c:2796 [inline]
__x64_sys_clone+0xc3/0xf0 kernel/fork.c:2796
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffffea00058fc1c8 of 8 bytes by task 17325 on cpu 1:
page_is_pfmemalloc include/linux/mm.h:1817 [inline]
__skb_fill_page_desc include/linux/skbuff.h:2432 [inline]
skb_fill_page_desc include/linux/skbuff.h:2453 [inline]
skb_append_pagefrags+0x210/0x600 net/core/skbuff.c:3974
unix_stream_sendpage+0x45e/0x990 net/unix/af_unix.c:2338
kernel_sendpage+0x184/0x300 net/socket.c:3561
sock_sendpage+0x5a/0x70 net/socket.c:1054
pipe_to_sendpage+0x128/0x160 fs/splice.c:361
splice_from_pipe_feed fs/splice.c:415 [inline]
__splice_from_pipe+0x222/0x4d0 fs/splice.c:559
splice_from_pipe fs/splice.c:594 [inline]
generic_splice_sendpage+0x89/0xc0 fs/splice.c:743
do_splice_from fs/splice.c:764 [inline]
direct_splice_actor+0x80/0xa0 fs/splice.c:931
splice_direct_to_actor+0x305/0x620 fs/splice.c:886
do_splice_direct+0xfb/0x180 fs/splice.c:974
do_sendfile+0x3bf/0x910 fs/read_write.c:1255
__do_sys_sendfile64 fs/read_write.c:1323 [inline]
__se_sys_sendfile64 fs/read_write.c:1309 [inline]
__x64_sys_sendfile64+0x10c/0x150 fs/read_write.c:1309
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x0000000000000000 -> 0xffffea00058fc188
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 17325 Comm: syz-executor.0 Not tainted 6.1.0-rc1-syzkaller-00158-g440b7895c990-dirty #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022 |
In the Linux kernel, the following vulnerability has been resolved:
wwan_hwsim: fix possible memory leak in wwan_hwsim_dev_new()
Inject fault while probing module, if device_register() fails,
but the refcount of kobject is not decreased to 0, the name
allocated in dev_set_name() is leaked. Fix this by calling
put_device(), so that name can be freed in callback function
kobject_cleanup().
unreferenced object 0xffff88810152ad20 (size 8):
comm "modprobe", pid 252, jiffies 4294849206 (age 22.713s)
hex dump (first 8 bytes):
68 77 73 69 6d 30 00 ff hwsim0..
backtrace:
[<000000009c3504ed>] __kmalloc_node_track_caller+0x44/0x1b0
[<00000000c0228a5e>] kvasprintf+0xb5/0x140
[<00000000cff8c21f>] kvasprintf_const+0x55/0x180
[<0000000055a1e073>] kobject_set_name_vargs+0x56/0x150
[<000000000a80b139>] dev_set_name+0xab/0xe0 |
In the Linux kernel, the following vulnerability has been resolved:
crypto: cavium - prevent integer overflow loading firmware
The "code_length" value comes from the firmware file. If your firmware
is untrusted realistically there is probably very little you can do to
protect yourself. Still we try to limit the damage as much as possible.
Also Smatch marks any data read from the filesystem as untrusted and
prints warnings if it not capped correctly.
The "ntohl(ucode->code_length) * 2" multiplication can have an
integer overflow. |
In the Linux kernel, the following vulnerability has been resolved:
drm/bridge: megachips: Fix a null pointer dereference bug
When removing the module we will get the following warning:
[ 31.911505] i2c-core: driver [stdp2690-ge-b850v3-fw] unregistered
[ 31.912484] general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN PTI
[ 31.913338] KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
[ 31.915280] RIP: 0010:drm_bridge_remove+0x97/0x130
[ 31.921825] Call Trace:
[ 31.922533] stdp4028_ge_b850v3_fw_remove+0x34/0x60 [megachips_stdpxxxx_ge_b850v3_fw]
[ 31.923139] i2c_device_remove+0x181/0x1f0
The two bridges (stdp2690, stdp4028) do not probe at the same time, so
the driver does not call ge_b850v3_resgiter() when probing, causing the
driver to try to remove the object that has not been initialized.
Fix this by checking whether both the bridges are probed. |
In the Linux kernel, the following vulnerability has been resolved:
ocxl: fix pci device refcount leak when calling get_function_0()
get_function_0() calls pci_get_domain_bus_and_slot(), as comment
says, it returns a pci device with refcount increment, so after
using it, pci_dev_put() needs be called.
Get the device reference when get_function_0() is not called, so
pci_dev_put() can be called in the error path and callers
unconditionally. And add comment above get_dvsec_vendor0() to tell
callers to call pci_dev_put(). |
Dataease is an open-source data visualization and analysis platform. In versions up to and including 2.10.12, the Impala data source is vulnerable to remote code execution due to insufficient filtering in the getJdbc method of the io.dataease.datasource.type.Impala class. Attackers can construct malicious JDBC connection strings that exploit JNDI injection and trigger RMI deserialization, ultimately enabling remote command execution. The vulnerability can be exploited by editing the data source and providing a crafted JDBC connection string that references a remote configuration file, leading to RMI-based deserialization attacks. This issue has been patched in version 2.10.13. It is recommended to upgrade to the latest version. No known workarounds exist for affected versions. |