Filtered by vendor Debian Subscriptions
Filtered by product Debian Linux Subscriptions
Total 8866 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2021-28957 6 Debian, Fedoraproject, Lxml and 3 more 7 Debian Linux, Fedora, Lxml and 4 more 2024-08-03 6.1 Medium
An XSS vulnerability was discovered in python-lxml's clean module versions before 4.6.3. When disabling the safe_attrs_only and forms arguments, the Cleaner class does not remove the formaction attribute allowing for JS to bypass the sanitizer. A remote attacker could exploit this flaw to run arbitrary JS code on users who interact with incorrectly sanitized HTML. This issue is patched in lxml 4.6.3.
CVE-2021-28963 2 Debian, Shibboleth 2 Debian Linux, Service Provider 2024-08-03 5.3 Medium
Shibboleth Service Provider before 3.2.1 allows content injection because template generation uses attacker-controlled parameters.
CVE-2021-28971 5 Debian, Fedoraproject, Linux and 2 more 10 Debian Linux, Fedora, Linux Kernel and 7 more 2024-08-03 5.5 Medium
In intel_pmu_drain_pebs_nhm in arch/x86/events/intel/ds.c in the Linux kernel through 5.11.8 on some Haswell CPUs, userspace applications (such as perf-fuzzer) can cause a system crash because the PEBS status in a PEBS record is mishandled, aka CID-d88d05a9e0b6.
CVE-2021-28831 3 Busybox, Debian, Fedoraproject 3 Busybox, Debian Linux, Fedora 2024-08-03 7.5 High
decompress_gunzip.c in BusyBox through 1.32.1 mishandles the error bit on the huft_build result pointer, with a resultant invalid free or segmentation fault, via malformed gzip data.
CVE-2021-28950 4 Debian, Fedoraproject, Linux and 1 more 5 Debian Linux, Fedora, Linux Kernel and 2 more 2024-08-03 5.5 Medium
An issue was discovered in fs/fuse/fuse_i.h in the Linux kernel before 5.11.8. A "stall on CPU" can occur because a retry loop continually finds the same bad inode, aka CID-775c5033a0d1.
CVE-2021-28964 4 Debian, Fedoraproject, Linux and 1 more 9 Debian Linux, Fedora, Linux Kernel and 6 more 2024-08-03 4.7 Medium
A race condition was discovered in get_old_root in fs/btrfs/ctree.c in the Linux kernel through 5.11.8. It allows attackers to cause a denial of service (BUG) because of a lack of locking on an extent buffer before a cloning operation, aka CID-dbcc7d57bffc.
CVE-2021-28713 2 Debian, Xen 2 Debian Linux, Xen 2024-08-03 6.5 Medium
Rogue backends can cause DoS of guests via high frequency events T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen offers the ability to run PV backends in regular unprivileged guests, typically referred to as "driver domains". Running PV backends in driver domains has one primary security advantage: if a driver domain gets compromised, it doesn't have the privileges to take over the system. However, a malicious driver domain could try to attack other guests via sending events at a high frequency leading to a Denial of Service in the guest due to trying to service interrupts for elongated amounts of time. There are three affected backends: * blkfront patch 1, CVE-2021-28711 * netfront patch 2, CVE-2021-28712 * hvc_xen (console) patch 3, CVE-2021-28713
CVE-2021-28834 3 Debian, Fedoraproject, Kramdown Project 3 Debian Linux, Fedora, Kramdown 2024-08-03 9.8 Critical
Kramdown before 2.3.1 does not restrict Rouge formatters to the Rouge::Formatters namespace, and thus arbitrary classes can be instantiated.
CVE-2021-28715 2 Debian, Linux 2 Debian Linux, Linux Kernel 2024-08-03 6.5 Medium
Guest can force Linux netback driver to hog large amounts of kernel memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Incoming data packets for a guest in the Linux kernel's netback driver are buffered until the guest is ready to process them. There are some measures taken for avoiding to pile up too much data, but those can be bypassed by the guest: There is a timeout how long the client side of an interface can stop consuming new packets before it is assumed to have stalled, but this timeout is rather long (60 seconds by default). Using a UDP connection on a fast interface can easily accumulate gigabytes of data in that time. (CVE-2021-28715) The timeout could even never trigger if the guest manages to have only one free slot in its RX queue ring page and the next package would require more than one free slot, which may be the case when using GSO, XDP, or software hashing. (CVE-2021-28714)
CVE-2021-28712 2 Debian, Xen 2 Debian Linux, Xen 2024-08-03 6.5 Medium
Rogue backends can cause DoS of guests via high frequency events T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen offers the ability to run PV backends in regular unprivileged guests, typically referred to as "driver domains". Running PV backends in driver domains has one primary security advantage: if a driver domain gets compromised, it doesn't have the privileges to take over the system. However, a malicious driver domain could try to attack other guests via sending events at a high frequency leading to a Denial of Service in the guest due to trying to service interrupts for elongated amounts of time. There are three affected backends: * blkfront patch 1, CVE-2021-28711 * netfront patch 2, CVE-2021-28712 * hvc_xen (console) patch 3, CVE-2021-28713
CVE-2021-28714 2 Debian, Linux 2 Debian Linux, Linux Kernel 2024-08-03 6.5 Medium
Guest can force Linux netback driver to hog large amounts of kernel memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Incoming data packets for a guest in the Linux kernel's netback driver are buffered until the guest is ready to process them. There are some measures taken for avoiding to pile up too much data, but those can be bypassed by the guest: There is a timeout how long the client side of an interface can stop consuming new packets before it is assumed to have stalled, but this timeout is rather long (60 seconds by default). Using a UDP connection on a fast interface can easily accumulate gigabytes of data in that time. (CVE-2021-28715) The timeout could even never trigger if the guest manages to have only one free slot in its RX queue ring page and the next package would require more than one free slot, which may be the case when using GSO, XDP, or software hashing. (CVE-2021-28714)
CVE-2021-28707 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-08-03 8.8 High
PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). The implementation of some of these hypercalls for PoD does not enforce the base page frame number to be suitably aligned for the specified order, yet some code involved in PoD handling actually makes such an assumption. These operations are XENMEM_decrease_reservation (CVE-2021-28704) and XENMEM_populate_physmap (CVE-2021-28707), the latter usable only by domains controlling the guest, i.e. a de-privileged qemu or a stub domain. (Patch 1, combining the fix to both these two issues.) In addition handling of XENMEM_decrease_reservation can also trigger a host crash when the specified page order is neither 4k nor 2M nor 1G (CVE-2021-28708, patch 2).
CVE-2021-28711 2 Debian, Xen 2 Debian Linux, Xen 2024-08-03 6.5 Medium
Rogue backends can cause DoS of guests via high frequency events T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen offers the ability to run PV backends in regular unprivileged guests, typically referred to as "driver domains". Running PV backends in driver domains has one primary security advantage: if a driver domain gets compromised, it doesn't have the privileges to take over the system. However, a malicious driver domain could try to attack other guests via sending events at a high frequency leading to a Denial of Service in the guest due to trying to service interrupts for elongated amounts of time. There are three affected backends: * blkfront patch 1, CVE-2021-28711 * netfront patch 2, CVE-2021-28712 * hvc_xen (console) patch 3, CVE-2021-28713
CVE-2021-28705 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-08-03 7.8 High
issues with partially successful P2M updates on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). In some cases the hypervisor carries out the requests by splitting them into smaller chunks. Error handling in certain PoD cases has been insufficient in that in particular partial success of some operations was not properly accounted for. There are two code paths affected - page removal (CVE-2021-28705) and insertion of new pages (CVE-2021-28709). (We provide one patch which combines the fix to both issues.)
CVE-2021-28695 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-08-03 6.8 Medium
IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldn't have access to anymore (CVE-2021-28696).
CVE-2021-28658 4 Debian, Djangoproject, Fedoraproject and 1 more 6 Debian Linux, Django, Fedora and 3 more 2024-08-03 5.3 Medium
In Django 2.2 before 2.2.20, 3.0 before 3.0.14, and 3.1 before 3.1.8, MultiPartParser allowed directory traversal via uploaded files with suitably crafted file names. Built-in upload handlers were not affected by this vulnerability.
CVE-2021-28701 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-08-03 7.8 High
Another race in XENMAPSPACE_grant_table handling Guests are permitted access to certain Xen-owned pages of memory. The majority of such pages remain allocated / associated with a guest for its entire lifetime. Grant table v2 status pages, however, are de-allocated when a guest switches (back) from v2 to v1. Freeing such pages requires that the hypervisor enforce that no parallel request can result in the addition of a mapping of such a page to a guest. That enforcement was missing, allowing guests to retain access to pages that were freed and perhaps re-used for other purposes. Unfortunately, when XSA-379 was being prepared, this similar issue was not noticed.
CVE-2021-28699 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-08-03 5.5 Medium
inadequate grant-v2 status frames array bounds check The v2 grant table interface separates grant attributes from grant status. That is, when operating in this mode, a guest has two tables. As a result, guests also need to be able to retrieve the addresses that the new status tracking table can be accessed through. For 32-bit guests on x86, translation of requests has to occur because the interface structure layouts commonly differ between 32- and 64-bit. The translation of the request to obtain the frame numbers of the grant status table involves translating the resulting array of frame numbers. Since the space used to carry out the translation is limited, the translation layer tells the core function the capacity of the array within translation space. Unfortunately the core function then only enforces array bounds to be below 8 times the specified value, and would write past the available space if enough frame numbers needed storing.
CVE-2021-28696 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-08-03 6.8 Medium
IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldn't have access to anymore (CVE-2021-28696).
CVE-2021-28709 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-08-03 7.8 High
issues with partially successful P2M updates on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). In some cases the hypervisor carries out the requests by splitting them into smaller chunks. Error handling in certain PoD cases has been insufficient in that in particular partial success of some operations was not properly accounted for. There are two code paths affected - page removal (CVE-2021-28705) and insertion of new pages (CVE-2021-28709). (We provide one patch which combines the fix to both issues.)