| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
xsk: recycle buffer in case Rx queue was full
Add missing xsk_buff_free() call when __xsk_rcv_zc() failed to produce
descriptor to XSK Rx queue. |
| In the Linux kernel, the following vulnerability has been resolved:
swiotlb: Fix double-allocation of slots due to broken alignment handling
Commit bbb73a103fbb ("swiotlb: fix a braino in the alignment check fix"),
which was a fix for commit 0eee5ae10256 ("swiotlb: fix slot alignment
checks"), causes a functional regression with vsock in a virtual machine
using bouncing via a restricted DMA SWIOTLB pool.
When virtio allocates the virtqueues for the vsock device using
dma_alloc_coherent(), the SWIOTLB search can return page-unaligned
allocations if 'area->index' was left unaligned by a previous allocation
from the buffer:
# Final address in brackets is the SWIOTLB address returned to the caller
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1645-1649/7168 (0x98326800)
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1649-1653/7168 (0x98328800)
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1653-1657/7168 (0x9832a800)
This ends badly (typically buffer corruption and/or a hang) because
swiotlb_alloc() is expecting a page-aligned allocation and so blindly
returns a pointer to the 'struct page' corresponding to the allocation,
therefore double-allocating the first half (2KiB slot) of the 4KiB page.
Fix the problem by treating the allocation alignment separately to any
additional alignment requirements from the device, using the maximum
of the two as the stride to search the buffer slots and taking care
to ensure a minimum of page-alignment for buffers larger than a page.
This also resolves swiotlb allocation failures occuring due to the
inclusion of ~PAGE_MASK in 'iotlb_align_mask' for large allocations and
resulting in alignment requirements exceeding swiotlb_max_mapping_size(). |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
md/dm-raid: don't call md_reap_sync_thread() directly
Currently md_reap_sync_thread() is called from raid_message() directly
without holding 'reconfig_mutex', this is definitely unsafe because
md_reap_sync_thread() can change many fields that is protected by
'reconfig_mutex'.
However, hold 'reconfig_mutex' here is still problematic because this
will cause deadlock, for example, commit 130443d60b1b ("md: refactor
idle/frozen_sync_thread() to fix deadlock").
Fix this problem by using stop_sync_thread() to unregister sync_thread,
like md/raid did. |
| PureVPN client applications on Linux through September 2025 allow IPv6 traffic to leak outside the VPN tunnel upon network events such as Wi-Fi reconnect or system resume. In the CLI client, the VPN auto-reconnects and claims to be connected, but IPv6 traffic is no longer routed or blocked. In the GUI client, the IPv6 connection remains functional after disconnection until the user clicks Reconnect. In both cases, the real IPv6 address is exposed to external services, violating user privacy and defeating the advertised IPv6 leak protection. This affects CLI 2.0.1 and GUI 2.10.0. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: intel-ish-hid: Fix kernel panic during warm reset
During warm reset device->fw_client is set to NULL. If a bus driver is
registered after this NULL setting and before new firmware clients are
enumerated by ISHTP, kernel panic will result in the function
ishtp_cl_bus_match(). This is because of reference to
device->fw_client->props.protocol_name.
ISH firmware after getting successfully loaded, sends a warm reset
notification to remove all clients from the bus and sets
device->fw_client to NULL. Until kernel v5.15, all enabled ISHTP kernel
module drivers were loaded right after any of the first ISHTP device was
registered, regardless of whether it was a matched or an unmatched
device. This resulted in all drivers getting registered much before the
warm reset notification from ISH.
Starting kernel v5.16, this issue got exposed after the change was
introduced to load only bus drivers for the respective matching devices.
In this scenario, cros_ec_ishtp device and cros_ec_ishtp driver are
registered after the warm reset device fw_client NULL setting.
cros_ec_ishtp driver_register() triggers the callback to
ishtp_cl_bus_match() to match ISHTP driver to the device and causes kernel
panic in guid_equal() when dereferencing fw_client NULL pointer to get
protocol_name. |
| PureVPN client applications on Linux through September 2025 mishandle firewalling. They flush the system's existing iptables rules and apply default ACCEPT policies when connecting to a VPN server. This removes firewall rules that may have been configured manually or by other software (e.g., UFW, container engines, or system security policies). Upon VPN disconnect, the original firewall state is not restored. As a result, the system may become unintentionally exposed to network traffic that was previously blocked. This affects CLI 2.0.1 and GUI 2.10.0. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Mark target gfn of emulated atomic instruction as dirty
When emulating an atomic access on behalf of the guest, mark the target
gfn dirty if the CMPXCHG by KVM is attempted and doesn't fault. This
fixes a bug where KVM effectively corrupts guest memory during live
migration by writing to guest memory without informing userspace that the
page is dirty.
Marking the page dirty got unintentionally dropped when KVM's emulated
CMPXCHG was converted to do a user access. Before that, KVM explicitly
mapped the guest page into kernel memory, and marked the page dirty during
the unmap phase.
Mark the page dirty even if the CMPXCHG fails, as the old data is written
back on failure, i.e. the page is still written. The value written is
guaranteed to be the same because the operation is atomic, but KVM's ABI
is that all writes are dirty logged regardless of the value written. And
more importantly, that's what KVM did before the buggy commit.
Huge kudos to the folks on the Cc list (and many others), who did all the
actual work of triaging and debugging.
base-commit: 6769ea8da8a93ed4630f1ce64df6aafcaabfce64 |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Keep xfd_state in sync with MSR_IA32_XFD
Commit 672365477ae8 ("x86/fpu: Update XFD state where required") and
commit 8bf26758ca96 ("x86/fpu: Add XFD state to fpstate") introduced a
per CPU variable xfd_state to keep the MSR_IA32_XFD value cached, in
order to avoid unnecessary writes to the MSR.
On CPU hotplug MSR_IA32_XFD is reset to the init_fpstate.xfd, which
wipes out any stale state. But the per CPU cached xfd value is not
reset, which brings them out of sync.
As a consequence a subsequent xfd_update_state() might fail to update
the MSR which in turn can result in XRSTOR raising a #NM in kernel
space, which crashes the kernel.
To fix this, introduce xfd_set_state() to write xfd_state together
with MSR_IA32_XFD, and use it in all places that set MSR_IA32_XFD. |
| In the Linux kernel, the following vulnerability has been resolved:
efi: fix panic in kdump kernel
Check if get_next_variable() is actually valid pointer before
calling it. In kdump kernel this method is set to NULL that causes
panic during the kexec-ed kernel boot.
Tested with QEMU and OVMF firmware. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix the warning division or modulo by zero
Checks the partition mode and returns an error for an invalid mode. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: dts: qcom: sdm845-db845c: Mark cont splash memory region as reserved
Adding a reserved memory region for the framebuffer memory
(the splash memory region set up by the bootloader).
It fixes a kernel panic (arm-smmu: Unhandled context fault
at this particular memory region) reported on DB845c running
v5.10.y. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Prevent crash when disable stream
[Why]
Disabling stream encoder invokes a function that no longer exists.
[How]
Check if the function declaration is NULL in disable stream encoder. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix null pointer dereference in alloc_preauth_hash()
The Client send malformed smb2 negotiate request. ksmbd return error
response. Subsequently, the client can send smb2 session setup even
thought conn->preauth_info is not allocated.
This patch add KSMBD_SESS_NEED_SETUP status of connection to ignore
session setup request if smb2 negotiate phase is not complete. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: HWS, change error flow on matcher disconnect
Currently, when firmware failure occurs during matcher disconnect flow,
the error flow of the function reconnects the matcher back and returns
an error, which continues running the calling function and eventually
frees the matcher that is being disconnected.
This leads to a case where we have a freed matcher on the matchers list,
which in turn leads to use-after-free and eventual crash.
This patch fixes that by not trying to reconnect the matcher back when
some FW command fails during disconnect.
Note that we're dealing here with FW error. We can't overcome this
problem. This might lead to bad steering state (e.g. wrong connection
between matchers), and will also lead to resource leakage, as it is
the case with any other error handling during resource destruction.
However, the goal here is to allow the driver to continue and not crash
the machine with use-after-free error. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race in read_extent_buffer_pages()
There are reports from tree-checker that detects corrupted nodes,
without any obvious pattern so possibly an overwrite in memory.
After some debugging it turns out there's a race when reading an extent
buffer the uptodate status can be missed.
To prevent concurrent reads for the same extent buffer,
read_extent_buffer_pages() performs these checks:
/* (1) */
if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
return 0;
/* (2) */
if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
goto done;
At this point, it seems safe to start the actual read operation. Once
that completes, end_bbio_meta_read() does
/* (3) */
set_extent_buffer_uptodate(eb);
/* (4) */
clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
Normally, this is enough to ensure only one read happens, and all other
callers wait for it to finish before returning. Unfortunately, there is
a racey interleaving:
Thread A | Thread B | Thread C
---------+----------+---------
(1) | |
| (1) |
(2) | |
(3) | |
(4) | |
| (2) |
| | (1)
When this happens, thread B kicks of an unnecessary read. Worse, thread
C will see UPTODATE set and return immediately, while the read from
thread B is still in progress. This race could result in tree-checker
errors like this as the extent buffer is concurrently modified:
BTRFS critical (device dm-0): corrupted node, root=256
block=8550954455682405139 owner mismatch, have 11858205567642294356
expect [256, 18446744073709551360]
Fix it by testing UPTODATE again after setting the READING bit, and if
it's been set, skip the unnecessary read.
[ minor update of changelog ] |
| In the Linux kernel, the following vulnerability has been resolved:
smb3: fix temporary data corruption in collapse range
collapse range doesn't discard the affected cached region
so can risk temporarily corrupting the file data. This
fixes xfstest generic/031
I also decided to merge a minor cleanup to this into the same patch
(avoiding rereading inode size repeatedly unnecessarily) to make it
clearer. |
| In the Linux kernel, the following vulnerability has been resolved:
smb3: fix temporary data corruption in insert range
insert range doesn't discard the affected cached region
so can risk temporarily corrupting file data.
Also includes some minor cleanup (avoiding rereading
inode size repeatedly unnecessarily) to make it clearer. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix overflow for large capacity partition
Using int type for sector index, there will be overflow in a large
capacity partition.
For example, if storage with sector size of 512 bytes and partition
capacity is larger than 2TB, there will be overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Don't double unplug aux on peer initiated reset
In the IDC callback that is accessed when the aux drivers request a reset,
the function to unplug the aux devices is called. This function is also
called in the ice_prepare_for_reset function. This double call is causing
a "scheduling while atomic" BUG.
[ 662.676430] ice 0000:4c:00.0 rocep76s0: cqp opcode = 0x1 maj_err_code = 0xffff min_err_code = 0x8003
[ 662.676609] ice 0000:4c:00.0 rocep76s0: [Modify QP Cmd Error][op_code=8] status=-29 waiting=1 completion_err=1 maj=0xffff min=0x8003
[ 662.815006] ice 0000:4c:00.0 rocep76s0: ICE OICR event notification: oicr = 0x10000003
[ 662.815014] ice 0000:4c:00.0 rocep76s0: critical PE Error, GLPE_CRITERR=0x00011424
[ 662.815017] ice 0000:4c:00.0 rocep76s0: Requesting a reset
[ 662.815475] BUG: scheduling while atomic: swapper/37/0/0x00010002
[ 662.815475] BUG: scheduling while atomic: swapper/37/0/0x00010002
[ 662.815477] Modules linked in: rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs rfkill 8021q garp mrp stp llc vfat fat rpcrdma intel_rapl_msr intel_rapl_common sunrpc i10nm_edac rdma_ucm nfit ib_srpt libnvdimm ib_isert iscsi_target_mod x86_pkg_temp_thermal intel_powerclamp coretemp target_core_mod snd_hda_intel ib_iser snd_intel_dspcfg libiscsi snd_intel_sdw_acpi scsi_transport_iscsi kvm_intel iTCO_wdt rdma_cm snd_hda_codec kvm iw_cm ipmi_ssif iTCO_vendor_support snd_hda_core irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel snd_hwdep snd_seq snd_seq_device rapl snd_pcm snd_timer isst_if_mbox_pci pcspkr isst_if_mmio irdma intel_uncore idxd acpi_ipmi joydev isst_if_common snd mei_me idxd_bus ipmi_si soundcore i2c_i801 mei ipmi_devintf i2c_smbus i2c_ismt ipmi_msghandler acpi_power_meter acpi_pad rv(OE) ib_uverbs ib_cm ib_core xfs libcrc32c ast i2c_algo_bit drm_vram_helper drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops drm_ttm_helpe
r ttm
[ 662.815546] nvme nvme_core ice drm crc32c_intel i40e t10_pi wmi pinctrl_emmitsburg dm_mirror dm_region_hash dm_log dm_mod fuse
[ 662.815557] Preemption disabled at:
[ 662.815558] [<0000000000000000>] 0x0
[ 662.815563] CPU: 37 PID: 0 Comm: swapper/37 Kdump: loaded Tainted: G S OE 5.17.1 #2
[ 662.815566] Hardware name: Intel Corporation D50DNP/D50DNP, BIOS SE5C6301.86B.6624.D18.2111021741 11/02/2021
[ 662.815568] Call Trace:
[ 662.815572] <IRQ>
[ 662.815574] dump_stack_lvl+0x33/0x42
[ 662.815581] __schedule_bug.cold.147+0x7d/0x8a
[ 662.815588] __schedule+0x798/0x990
[ 662.815595] schedule+0x44/0xc0
[ 662.815597] schedule_preempt_disabled+0x14/0x20
[ 662.815600] __mutex_lock.isra.11+0x46c/0x490
[ 662.815603] ? __ibdev_printk+0x76/0xc0 [ib_core]
[ 662.815633] device_del+0x37/0x3d0
[ 662.815639] ice_unplug_aux_dev+0x1a/0x40 [ice]
[ 662.815674] ice_schedule_reset+0x3c/0xd0 [ice]
[ 662.815693] irdma_iidc_event_handler.cold.7+0xb6/0xd3 [irdma]
[ 662.815712] ? bitmap_find_next_zero_area_off+0x45/0xa0
[ 662.815719] ice_send_event_to_aux+0x54/0x70 [ice]
[ 662.815741] ice_misc_intr+0x21d/0x2d0 [ice]
[ 662.815756] __handle_irq_event_percpu+0x4c/0x180
[ 662.815762] handle_irq_event_percpu+0xf/0x40
[ 662.815764] handle_irq_event+0x34/0x60
[ 662.815766] handle_edge_irq+0x9a/0x1c0
[ 662.815770] __common_interrupt+0x62/0x100
[ 662.815774] common_interrupt+0xb4/0xd0
[ 662.815779] </IRQ>
[ 662.815780] <TASK>
[ 662.815780] asm_common_interrupt+0x1e/0x40
[ 662.815785] RIP: 0010:cpuidle_enter_state+0xd6/0x380
[ 662.815789] Code: 49 89 c4 0f 1f 44 00 00 31 ff e8 65 d7 95 ff 45 84 ff 74 12 9c 58 f6 c4 02 0f 85 64 02 00 00 31 ff e8 ae c5 9c ff fb 45 85 f6 <0f> 88 12 01 00 00 49 63 d6 4c 2b 24 24 48 8d 04 52 48 8d 04 82 49
[ 662.815791] RSP: 0018:ff2c2c4f18edbe80 EFLAGS: 00000202
[ 662.815793] RAX: ff280805df140000 RBX: 0000000000000002 RCX: 000000000000001f
[ 662.815795] RDX: 0000009a52da2d08 R
---truncated--- |