CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
idpf: fix UAFs when destroying the queues
The second tagged commit started sometimes (very rarely, but possible)
throwing WARNs from
net/core/page_pool.c:page_pool_disable_direct_recycling().
Turned out idpf frees interrupt vectors with embedded NAPIs *before*
freeing the queues making page_pools' NAPI pointers lead to freed
memory before these pools are destroyed by libeth.
It's not clear whether there are other accesses to the freed vectors
when destroying the queues, but anyway, we usually free queue/interrupt
vectors only when the queues are destroyed and the NAPIs are guaranteed
to not be referenced anywhere.
Invert the allocation and freeing logic making queue/interrupt vectors
be allocated first and freed last. Vectors don't require queues to be
present, so this is safe. Additionally, this change allows to remove
that useless queue->q_vector pointer cleanup, as vectors are still
valid when freeing the queues (+ both are freed within one function,
so it's not clear why nullify the pointers at all). |
In the Linux kernel, the following vulnerability has been resolved:
gpio: prevent potential speculation leaks in gpio_device_get_desc()
Userspace may trigger a speculative read of an address outside the gpio
descriptor array.
Users can do that by calling gpio_ioctl() with an offset out of range.
Offset is copied from user and then used as an array index to get
the gpio descriptor without sanitization in gpio_device_get_desc().
This change ensures that the offset is sanitized by using
array_index_nospec() to mitigate any possibility of speculative
information leaks.
This bug was discovered and resolved using Coverity Static Analysis
Security Testing (SAST) by Synopsys, Inc. |
In the Linux kernel, the following vulnerability has been resolved:
md/raid5: avoid BUG_ON() while continue reshape after reassembling
Currently, mdadm support --revert-reshape to abort the reshape while
reassembling, as the test 07revert-grow. However, following BUG_ON()
can be triggerred by the test:
kernel BUG at drivers/md/raid5.c:6278!
invalid opcode: 0000 [#1] PREEMPT SMP PTI
irq event stamp: 158985
CPU: 6 PID: 891 Comm: md0_reshape Not tainted 6.9.0-03335-g7592a0b0049a #94
RIP: 0010:reshape_request+0x3f1/0xe60
Call Trace:
<TASK>
raid5_sync_request+0x43d/0x550
md_do_sync+0xb7a/0x2110
md_thread+0x294/0x2b0
kthread+0x147/0x1c0
ret_from_fork+0x59/0x70
ret_from_fork_asm+0x1a/0x30
</TASK>
Root cause is that --revert-reshape update the raid_disks from 5 to 4,
while reshape position is still set, and after reassembling the array,
reshape position will be read from super block, then during reshape the
checking of 'writepos' that is caculated by old reshape position will
fail.
Fix this panic the easy way first, by converting the BUG_ON() to
WARN_ON(), and stop the reshape if checkings fail.
Noted that mdadm must fix --revert-shape as well, and probably md/raid
should enhance metadata validation as well, however this means
reassemble will fail and there must be user tools to fix the wrong
metadata. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: add missing check_func_arg_reg_off() to prevent out-of-bounds memory accesses
Currently, it's possible to pass in a modified CONST_PTR_TO_DYNPTR to
a global function as an argument. The adverse effects of this is that
BPF helpers can continue to make use of this modified
CONST_PTR_TO_DYNPTR from within the context of the global function,
which can unintentionally result in out-of-bounds memory accesses and
therefore compromise overall system stability i.e.
[ 244.157771] BUG: KASAN: slab-out-of-bounds in bpf_dynptr_data+0x137/0x140
[ 244.161345] Read of size 8 at addr ffff88810914be68 by task test_progs/302
[ 244.167151] CPU: 0 PID: 302 Comm: test_progs Tainted: G O E 6.10.0-rc3-00131-g66b586715063 #533
[ 244.174318] Call Trace:
[ 244.175787] <TASK>
[ 244.177356] dump_stack_lvl+0x66/0xa0
[ 244.179531] print_report+0xce/0x670
[ 244.182314] ? __virt_addr_valid+0x200/0x3e0
[ 244.184908] kasan_report+0xd7/0x110
[ 244.187408] ? bpf_dynptr_data+0x137/0x140
[ 244.189714] ? bpf_dynptr_data+0x137/0x140
[ 244.192020] bpf_dynptr_data+0x137/0x140
[ 244.194264] bpf_prog_b02a02fdd2bdc5fa_global_call_bpf_dynptr_data+0x22/0x26
[ 244.198044] bpf_prog_b0fe7b9d7dc3abde_callback_adjust_bpf_dynptr_reg_off+0x1f/0x23
[ 244.202136] bpf_user_ringbuf_drain+0x2c7/0x570
[ 244.204744] ? 0xffffffffc0009e58
[ 244.206593] ? __pfx_bpf_user_ringbuf_drain+0x10/0x10
[ 244.209795] bpf_prog_33ab33f6a804ba2d_user_ringbuf_callback_const_ptr_to_dynptr_reg_off+0x47/0x4b
[ 244.215922] bpf_trampoline_6442502480+0x43/0xe3
[ 244.218691] __x64_sys_prlimit64+0x9/0xf0
[ 244.220912] do_syscall_64+0xc1/0x1d0
[ 244.223043] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 244.226458] RIP: 0033:0x7ffa3eb8f059
[ 244.228582] Code: 08 89 e8 5b 5d c3 66 2e 0f 1f 84 00 00 00 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 8f 1d 0d 00 f7 d8 64 89 01 48
[ 244.241307] RSP: 002b:00007ffa3e9c6eb8 EFLAGS: 00000206 ORIG_RAX: 000000000000012e
[ 244.246474] RAX: ffffffffffffffda RBX: 00007ffa3e9c7cdc RCX: 00007ffa3eb8f059
[ 244.250478] RDX: 00007ffa3eb162b4 RSI: 0000000000000000 RDI: 00007ffa3e9c7fb0
[ 244.255396] RBP: 00007ffa3e9c6ed0 R08: 00007ffa3e9c76c0 R09: 0000000000000000
[ 244.260195] R10: 0000000000000000 R11: 0000000000000206 R12: ffffffffffffff80
[ 244.264201] R13: 000000000000001c R14: 00007ffc5d6b4260 R15: 00007ffa3e1c7000
[ 244.268303] </TASK>
Add a check_func_arg_reg_off() to the path in which the BPF verifier
verifies the arguments of global function arguments, specifically
those which take an argument of type ARG_PTR_TO_DYNPTR |
MEM_RDONLY. Also, process_dynptr_func() doesn't appear to perform any
explicit and strict type matching on the supplied register type, so
let's also enforce that a register either type PTR_TO_STACK or
CONST_PTR_TO_DYNPTR is by the caller. |
In the Linux kernel, the following vulnerability has been resolved:
padata: Fix possible divide-by-0 panic in padata_mt_helper()
We are hit with a not easily reproducible divide-by-0 panic in padata.c at
bootup time.
[ 10.017908] Oops: divide error: 0000 1 PREEMPT SMP NOPTI
[ 10.017908] CPU: 26 PID: 2627 Comm: kworker/u1666:1 Not tainted 6.10.0-15.el10.x86_64 #1
[ 10.017908] Hardware name: Lenovo ThinkSystem SR950 [7X12CTO1WW]/[7X12CTO1WW], BIOS [PSE140J-2.30] 07/20/2021
[ 10.017908] Workqueue: events_unbound padata_mt_helper
[ 10.017908] RIP: 0010:padata_mt_helper+0x39/0xb0
:
[ 10.017963] Call Trace:
[ 10.017968] <TASK>
[ 10.018004] ? padata_mt_helper+0x39/0xb0
[ 10.018084] process_one_work+0x174/0x330
[ 10.018093] worker_thread+0x266/0x3a0
[ 10.018111] kthread+0xcf/0x100
[ 10.018124] ret_from_fork+0x31/0x50
[ 10.018138] ret_from_fork_asm+0x1a/0x30
[ 10.018147] </TASK>
Looking at the padata_mt_helper() function, the only way a divide-by-0
panic can happen is when ps->chunk_size is 0. The way that chunk_size is
initialized in padata_do_multithreaded(), chunk_size can be 0 when the
min_chunk in the passed-in padata_mt_job structure is 0.
Fix this divide-by-0 panic by making sure that chunk_size will be at least
1 no matter what the input parameters are. |
In the Linux kernel, the following vulnerability has been resolved:
mm: list_lru: fix UAF for memory cgroup
The mem_cgroup_from_slab_obj() is supposed to be called under rcu lock or
cgroup_mutex or others which could prevent returned memcg from being
freed. Fix it by adding missing rcu read lock.
Found by code inspection.
[songmuchun@bytedance.com: only grab rcu lock when necessary, per Vlastimil] |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Add error handling to pair_device()
hci_conn_params_add() never checks for a NULL value and could lead to a NULL
pointer dereference causing a crash.
Fixed by adding error handling in the function. |
In the Linux kernel, the following vulnerability has been resolved:
exec: Fix ToCToU between perm check and set-uid/gid usage
When opening a file for exec via do_filp_open(), permission checking is
done against the file's metadata at that moment, and on success, a file
pointer is passed back. Much later in the execve() code path, the file
metadata (specifically mode, uid, and gid) is used to determine if/how
to set the uid and gid. However, those values may have changed since the
permissions check, meaning the execution may gain unintended privileges.
For example, if a file could change permissions from executable and not
set-id:
---------x 1 root root 16048 Aug 7 13:16 target
to set-id and non-executable:
---S------ 1 root root 16048 Aug 7 13:16 target
it is possible to gain root privileges when execution should have been
disallowed.
While this race condition is rare in real-world scenarios, it has been
observed (and proven exploitable) when package managers are updating
the setuid bits of installed programs. Such files start with being
world-executable but then are adjusted to be group-exec with a set-uid
bit. For example, "chmod o-x,u+s target" makes "target" executable only
by uid "root" and gid "cdrom", while also becoming setuid-root:
-rwxr-xr-x 1 root cdrom 16048 Aug 7 13:16 target
becomes:
-rwsr-xr-- 1 root cdrom 16048 Aug 7 13:16 target
But racing the chmod means users without group "cdrom" membership can
get the permission to execute "target" just before the chmod, and when
the chmod finishes, the exec reaches brpm_fill_uid(), and performs the
setuid to root, violating the expressed authorization of "only cdrom
group members can setuid to root".
Re-check that we still have execute permissions in case the metadata
has changed. It would be better to keep a copy from the perm-check time,
but until we can do that refactoring, the least-bad option is to do a
full inode_permission() call (under inode lock). It is understood that
this is safe against dead-locks, but hardly optimal. |
In the Linux kernel, the following vulnerability has been resolved:
vhost/vsock: always initialize seqpacket_allow
There are two issues around seqpacket_allow:
1. seqpacket_allow is not initialized when socket is
created. Thus if features are never set, it will be
read uninitialized.
2. if VIRTIO_VSOCK_F_SEQPACKET is set and then cleared,
then seqpacket_allow will not be cleared appropriately
(existing apps I know about don't usually do this but
it's legal and there's no way to be sure no one relies
on this).
To fix:
- initialize seqpacket_allow after allocation
- set it unconditionally in set_features |
In the Linux kernel, the following vulnerability has been resolved:
devres: Fix memory leakage caused by driver API devm_free_percpu()
It will cause memory leakage when use driver API devm_free_percpu()
to free memory allocated by devm_alloc_percpu(), fixed by using
devres_release() instead of devres_destroy() within devm_free_percpu(). |
In the Linux kernel, the following vulnerability has been resolved:
dma: fix call order in dmam_free_coherent
dmam_free_coherent() frees a DMA allocation, which makes the
freed vaddr available for reuse, then calls devres_destroy()
to remove and free the data structure used to track the DMA
allocation. Between the two calls, it is possible for a
concurrent task to make an allocation with the same vaddr
and add it to the devres list.
If this happens, there will be two entries in the devres list
with the same vaddr and devres_destroy() can free the wrong
entry, triggering the WARN_ON() in dmam_match.
Fix by destroying the devres entry before freeing the DMA
allocation.
kokonut //net/encryption
http://sponge2/b9145fe6-0f72-4325-ac2f-a84d81075b03 |
In the Linux kernel, the following vulnerability has been resolved:
block: initialize integrity buffer to zero before writing it to media
Metadata added by bio_integrity_prep is using plain kmalloc, which leads
to random kernel memory being written media. For PI metadata this is
limited to the app tag that isn't used by kernel generated metadata,
but for non-PI metadata the entire buffer leaks kernel memory.
Fix this by adding the __GFP_ZERO flag to allocations for writes. |
In the Linux kernel, the following vulnerability has been resolved:
cgroup/cpuset: Prevent UAF in proc_cpuset_show()
An UAF can happen when /proc/cpuset is read as reported in [1].
This can be reproduced by the following methods:
1.add an mdelay(1000) before acquiring the cgroup_lock In the
cgroup_path_ns function.
2.$cat /proc/<pid>/cpuset repeatly.
3.$mount -t cgroup -o cpuset cpuset /sys/fs/cgroup/cpuset/
$umount /sys/fs/cgroup/cpuset/ repeatly.
The race that cause this bug can be shown as below:
(umount) | (cat /proc/<pid>/cpuset)
css_release | proc_cpuset_show
css_release_work_fn | css = task_get_css(tsk, cpuset_cgrp_id);
css_free_rwork_fn | cgroup_path_ns(css->cgroup, ...);
cgroup_destroy_root | mutex_lock(&cgroup_mutex);
rebind_subsystems |
cgroup_free_root |
| // cgrp was freed, UAF
| cgroup_path_ns_locked(cgrp,..);
When the cpuset is initialized, the root node top_cpuset.css.cgrp
will point to &cgrp_dfl_root.cgrp. In cgroup v1, the mount operation will
allocate cgroup_root, and top_cpuset.css.cgrp will point to the allocated
&cgroup_root.cgrp. When the umount operation is executed,
top_cpuset.css.cgrp will be rebound to &cgrp_dfl_root.cgrp.
The problem is that when rebinding to cgrp_dfl_root, there are cases
where the cgroup_root allocated by setting up the root for cgroup v1
is cached. This could lead to a Use-After-Free (UAF) if it is
subsequently freed. The descendant cgroups of cgroup v1 can only be
freed after the css is released. However, the css of the root will never
be released, yet the cgroup_root should be freed when it is unmounted.
This means that obtaining a reference to the css of the root does
not guarantee that css.cgrp->root will not be freed.
Fix this problem by using rcu_read_lock in proc_cpuset_show().
As cgroup_root is kfree_rcu after commit d23b5c577715
("cgroup: Make operations on the cgroup root_list RCU safe"),
css->cgroup won't be freed during the critical section.
To call cgroup_path_ns_locked, css_set_lock is needed, so it is safe to
replace task_get_css with task_css.
[1] https://syzkaller.appspot.com/bug?extid=9b1ff7be974a403aa4cd |
In the Linux kernel, the following vulnerability has been resolved:
lib: objagg: Fix general protection fault
The library supports aggregation of objects into other objects only if
the parent object does not have a parent itself. That is, nesting is not
supported.
Aggregation happens in two cases: Without and with hints, where hints
are a pre-computed recommendation on how to aggregate the provided
objects.
Nesting is not possible in the first case due to a check that prevents
it, but in the second case there is no check because the assumption is
that nesting cannot happen when creating objects based on hints. The
violation of this assumption leads to various warnings and eventually to
a general protection fault [1].
Before fixing the root cause, error out when nesting happens and warn.
[1]
general protection fault, probably for non-canonical address 0xdead000000000d90: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 1083 Comm: kworker/1:9 Tainted: G W 6.9.0-rc6-custom-gd9b4f1cca7fb #7
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:mlxsw_sp_acl_erp_bf_insert+0x25/0x80
[...]
Call Trace:
<TASK>
mlxsw_sp_acl_atcam_entry_add+0x256/0x3c0
mlxsw_sp_acl_tcam_entry_create+0x5e/0xa0
mlxsw_sp_acl_tcam_vchunk_migrate_one+0x16b/0x270
mlxsw_sp_acl_tcam_vregion_rehash_work+0xbe/0x510
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: Fix array index mistake in rtw89_sta_info_get_iter()
In rtw89_sta_info_get_iter() 'status->he_gi' is compared to array size.
But then 'rate->he_gi' is used as array index instead of 'status->he_gi'.
This can lead to go beyond array boundaries in case of 'rate->he_gi' is
not equal to 'status->he_gi' and is bigger than array size. Looks like
"copy-paste" mistake.
Fix this mistake by replacing 'rate->he_gi' with 'status->he_gi'.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix infinite loop when replaying fast_commit
When doing fast_commit replay an infinite loop may occur due to an
uninitialized extent_status struct. ext4_ext_determine_insert_hole() does
not detect the replay and calls ext4_es_find_extent_range(), which will
return immediately without initializing the 'es' variable.
Because 'es' contains garbage, an integer overflow may happen causing an
infinite loop in this function, easily reproducible using fstest generic/039.
This commit fixes this issue by unconditionally initializing the structure
in function ext4_es_find_extent_range().
Thanks to Zhang Yi, for figuring out the real problem! |
In the Linux kernel, the following vulnerability has been resolved:
PCI: keystone: Fix NULL pointer dereference in case of DT error in ks_pcie_setup_rc_app_regs()
If IORESOURCE_MEM is not provided in Device Tree due to
any error, resource_list_first_type() will return NULL and
pci_parse_request_of_pci_ranges() will just emit a warning.
This will cause a NULL pointer dereference. Fix this bug by adding NULL
return check.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix a possible null pointer dereference
In function lpfc_xcvr_data_show, the memory allocation with kmalloc might
fail, thereby making rdp_context a null pointer. In the following context
and functions that use this pointer, there are dereferencing operations,
leading to null pointer dereference.
To fix this issue, a null pointer check should be added. If it is null,
use scnprintf to notify the user and return len. |
In the Linux kernel, the following vulnerability has been resolved:
mm/mglru: fix div-by-zero in vmpressure_calc_level()
evict_folios() uses a second pass to reclaim folios that have gone through
page writeback and become clean before it finishes the first pass, since
folio_rotate_reclaimable() cannot handle those folios due to the
isolation.
The second pass tries to avoid potential double counting by deducting
scan_control->nr_scanned. However, this can result in underflow of
nr_scanned, under a condition where shrink_folio_list() does not increment
nr_scanned, i.e., when folio_trylock() fails.
The underflow can cause the divisor, i.e., scale=scanned+reclaimed in
vmpressure_calc_level(), to become zero, resulting in the following crash:
[exception RIP: vmpressure_work_fn+101]
process_one_work at ffffffffa3313f2b
Since scan_control->nr_scanned has no established semantics, the potential
double counting has minimal risks. Therefore, fix the problem by not
deducting scan_control->nr_scanned in evict_folios(). |
In the Linux kernel, the following vulnerability has been resolved:
exfat: fix potential deadlock on __exfat_get_dentry_set
When accessing a file with more entries than ES_MAX_ENTRY_NUM, the bh-array
is allocated in __exfat_get_entry_set. The problem is that the bh-array is
allocated with GFP_KERNEL. It does not make sense. In the following cases,
a deadlock for sbi->s_lock between the two processes may occur.
CPU0 CPU1
---- ----
kswapd
balance_pgdat
lock(fs_reclaim)
exfat_iterate
lock(&sbi->s_lock)
exfat_readdir
exfat_get_uniname_from_ext_entry
exfat_get_dentry_set
__exfat_get_dentry_set
kmalloc_array
...
lock(fs_reclaim)
...
evict
exfat_evict_inode
lock(&sbi->s_lock)
To fix this, let's allocate bh-array with GFP_NOFS. |