| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on i_xattr_nid in sanity_check_inode()
syzbot reports a kernel bug as below:
F2FS-fs (loop0): Mounted with checkpoint version = 48b305e4
==================================================================
BUG: KASAN: slab-out-of-bounds in f2fs_test_bit fs/f2fs/f2fs.h:2933 [inline]
BUG: KASAN: slab-out-of-bounds in current_nat_addr fs/f2fs/node.h:213 [inline]
BUG: KASAN: slab-out-of-bounds in f2fs_get_node_info+0xece/0x1200 fs/f2fs/node.c:600
Read of size 1 at addr ffff88807a58c76c by task syz-executor280/5076
CPU: 1 PID: 5076 Comm: syz-executor280 Not tainted 6.9.0-rc5-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
f2fs_test_bit fs/f2fs/f2fs.h:2933 [inline]
current_nat_addr fs/f2fs/node.h:213 [inline]
f2fs_get_node_info+0xece/0x1200 fs/f2fs/node.c:600
f2fs_xattr_fiemap fs/f2fs/data.c:1848 [inline]
f2fs_fiemap+0x55d/0x1ee0 fs/f2fs/data.c:1925
ioctl_fiemap fs/ioctl.c:220 [inline]
do_vfs_ioctl+0x1c07/0x2e50 fs/ioctl.c:838
__do_sys_ioctl fs/ioctl.c:902 [inline]
__se_sys_ioctl+0x81/0x170 fs/ioctl.c:890
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The root cause is we missed to do sanity check on i_xattr_nid during
f2fs_iget(), so that in fiemap() path, current_nat_addr() will access
nat_bitmap w/ offset from invalid i_xattr_nid, result in triggering
kasan bug report, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: fix oops during rmmod
"rmmod bonding" causes an oops ever since commit cc317ea3d927 ("bonding:
remove redundant NULL check in debugfs function"). Here are the relevant
functions being called:
bonding_exit()
bond_destroy_debugfs()
debugfs_remove_recursive(bonding_debug_root);
bonding_debug_root = NULL; <--------- SET TO NULL HERE
bond_netlink_fini()
rtnl_link_unregister()
__rtnl_link_unregister()
unregister_netdevice_many_notify()
bond_uninit()
bond_debug_unregister()
(commit removed check for bonding_debug_root == NULL)
debugfs_remove()
simple_recursive_removal()
down_write() -> OOPS
However, reverting the bad commit does not solve the problem completely
because the original code contains a race that could cause the same
oops, although it was much less likely to be triggered unintentionally:
CPU1
rmmod bonding
bonding_exit()
bond_destroy_debugfs()
debugfs_remove_recursive(bonding_debug_root);
CPU2
echo -bond0 > /sys/class/net/bonding_masters
bond_uninit()
bond_debug_unregister()
if (!bonding_debug_root)
CPU1
bonding_debug_root = NULL;
So do NOT revert the bad commit (since the removed checks were racy
anyway), and instead change the order of actions taken during module
removal. The same oops can also happen if there is an error during
module init, so apply the same fix there. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "xsk: Support redirect to any socket bound to the same umem"
This reverts commit 2863d665ea41282379f108e4da6c8a2366ba66db.
This patch introduced a potential kernel crash when multiple napi instances
redirect to the same AF_XDP socket. By removing the queue_index check, it is
possible for multiple napi instances to access the Rx ring at the same time,
which will result in a corrupted ring state which can lead to a crash when
flushing the rings in __xsk_flush(). This can happen when the linked list of
sockets to flush gets corrupted by concurrent accesses. A quick and small fix
is not possible, so let us revert this for now. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: protect folio::private when attaching extent buffer folios
[BUG]
Since v6.8 there are rare kernel crashes reported by various people,
the common factor is bad page status error messages like this:
BUG: Bad page state in process kswapd0 pfn:d6e840
page: refcount:0 mapcount:0 mapping:000000007512f4f2 index:0x2796c2c7c
pfn:0xd6e840
aops:btree_aops ino:1
flags: 0x17ffffe0000008(uptodate|node=0|zone=2|lastcpupid=0x3fffff)
page_type: 0xffffffff()
raw: 0017ffffe0000008 dead000000000100 dead000000000122 ffff88826d0be4c0
raw: 00000002796c2c7c 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: non-NULL mapping
[CAUSE]
Commit 09e6cef19c9f ("btrfs: refactor alloc_extent_buffer() to
allocate-then-attach method") changes the sequence when allocating a new
extent buffer.
Previously we always called grab_extent_buffer() under
mapping->i_private_lock, to ensure the safety on modification on
folio::private (which is a pointer to extent buffer for regular
sectorsize).
This can lead to the following race:
Thread A is trying to allocate an extent buffer at bytenr X, with 4
4K pages, meanwhile thread B is trying to release the page at X + 4K
(the second page of the extent buffer at X).
Thread A | Thread B
-----------------------------------+-------------------------------------
| btree_release_folio()
| | This is for the page at X + 4K,
| | Not page X.
| |
alloc_extent_buffer() | |- release_extent_buffer()
|- filemap_add_folio() for the | | |- atomic_dec_and_test(eb->refs)
| page at bytenr X (the first | | |
| page). | | |
| Which returned -EEXIST. | | |
| | | |
|- filemap_lock_folio() | | |
| Returned the first page locked. | | |
| | | |
|- grab_extent_buffer() | | |
| |- atomic_inc_not_zero() | | |
| | Returned false | | |
| |- folio_detach_private() | | |- folio_detach_private() for X
| |- folio_test_private() | | |- folio_test_private()
| Returned true | | | Returned true
|- folio_put() | |- folio_put()
Now there are two puts on the same folio at folio X, leading to refcount
underflow of the folio X, and eventually causing the BUG_ON() on the
page->mapping.
The condition is not that easy to hit:
- The release must be triggered for the middle page of an eb
If the release is on the same first page of an eb, page lock would kick
in and prevent the race.
- folio_detach_private() has a very small race window
It's only between folio_test_private() and folio_clear_private().
That's exactly when mapping->i_private_lock is used to prevent such race,
and commit 09e6cef19c9f ("btrfs: refactor alloc_extent_buffer() to
allocate-then-attach method") screwed that up.
At that time, I thought the page lock would kick in as
filemap_release_folio() also requires the page to be locked, but forgot
the filemap_release_folio() only locks one page, not all pages of an
extent buffer.
[FIX]
Move all the code requiring i_private_lock into
attach_eb_folio_to_filemap(), so that everything is done with proper
lock protection.
Furthermore to prevent future problems, add an extra
lockdep_assert_locked() to ensure we're holding the proper lock.
To reproducer that is able to hit the race (takes a few minutes with
instrumented code inserting delays to alloc_extent_buffer()):
#!/bin/sh
drop_caches () {
while(true); do
echo 3 > /proc/sys/vm/drop_caches
echo 1 > /proc/sys/vm/compact_memory
done
}
run_tar () {
while(true); do
for x in `seq 1 80` ; do
tar cf /dev/zero /mnt > /dev/null &
done
wait
done
}
mkfs.btrfs -f -d single -m single
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Try to fix random segmentation faults in package builds
PA-RISC systems with PA8800 and PA8900 processors have had problems
with random segmentation faults for many years. Systems with earlier
processors are much more stable.
Systems with PA8800 and PA8900 processors have a large L2 cache which
needs per page flushing for decent performance when a large range is
flushed. The combined cache in these systems is also more sensitive to
non-equivalent aliases than the caches in earlier systems.
The majority of random segmentation faults that I have looked at
appear to be memory corruption in memory allocated using mmap and
malloc.
My first attempt at fixing the random faults didn't work. On
reviewing the cache code, I realized that there were two issues
which the existing code didn't handle correctly. Both relate
to cache move-in. Another issue is that the present bit in PTEs
is racy.
1) PA-RISC caches have a mind of their own and they can speculatively
load data and instructions for a page as long as there is a entry in
the TLB for the page which allows move-in. TLBs are local to each
CPU. Thus, the TLB entry for a page must be purged before flushing
the page. This is particularly important on SMP systems.
In some of the flush routines, the flush routine would be called
and then the TLB entry would be purged. This was because the flush
routine needed the TLB entry to do the flush.
2) My initial approach to trying the fix the random faults was to
try and use flush_cache_page_if_present for all flush operations.
This actually made things worse and led to a couple of hardware
lockups. It finally dawned on me that some lines weren't being
flushed because the pte check code was racy. This resulted in
random inequivalent mappings to physical pages.
The __flush_cache_page tmpalias flush sets up its own TLB entry
and it doesn't need the existing TLB entry. As long as we can find
the pte pointer for the vm page, we can get the pfn and physical
address of the page. We can also purge the TLB entry for the page
before doing the flush. Further, __flush_cache_page uses a special
TLB entry that inhibits cache move-in.
When switching page mappings, we need to ensure that lines are
removed from the cache. It is not sufficient to just flush the
lines to memory as they may come back.
This made it clear that we needed to implement all the required
flush operations using tmpalias routines. This includes flushes
for user and kernel pages.
After modifying the code to use tmpalias flushes, it became clear
that the random segmentation faults were not fully resolved. The
frequency of faults was worse on systems with a 64 MB L2 (PA8900)
and systems with more CPUs (rp4440).
The warning that I added to flush_cache_page_if_present to detect
pages that couldn't be flushed triggered frequently on some systems.
Helge and I looked at the pages that couldn't be flushed and found
that the PTE was either cleared or for a swap page. Ignoring pages
that were swapped out seemed okay but pages with cleared PTEs seemed
problematic.
I looked at routines related to pte_clear and noticed ptep_clear_flush.
The default implementation just flushes the TLB entry. However, it was
obvious that on parisc we need to flush the cache page as well. If
we don't flush the cache page, stale lines will be left in the cache
and cause random corruption. Once a PTE is cleared, there is no way
to find the physical address associated with the PTE and flush the
associated page at a later time.
I implemented an updated change with a parisc specific version of
ptep_clear_flush. It fixed the random data corruption on Helge's rp4440
and rp3440, as well as on my c8000.
At this point, I realized that I could restore the code where we only
flush in flush_cache_page_if_present if the page has been accessed.
However, for this, we also need to flush the cache when the accessed
bit is cleared in
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix request.queuelist usage in flush
Friedrich Weber reported a kernel crash problem and bisected to commit
81ada09cc25e ("blk-flush: reuse rq queuelist in flush state machine").
The root cause is that we use "list_move_tail(&rq->queuelist, pending)"
in the PREFLUSH/POSTFLUSH sequences. But rq->queuelist.next == xxx since
it's popped out from plug->cached_rq in __blk_mq_alloc_requests_batch().
We don't initialize its queuelist just for this first request, although
the queuelist of all later popped requests will be initialized.
Fix it by changing to use "list_add_tail(&rq->queuelist, pending)" so
rq->queuelist doesn't need to be initialized. It should be ok since rq
can't be on any list when PREFLUSH or POSTFLUSH, has no move actually.
Please note the commit 81ada09cc25e ("blk-flush: reuse rq queuelist in
flush state machine") also has another requirement that no drivers would
touch rq->queuelist after blk_mq_end_request() since we will reuse it to
add rq to the post-flush pending list in POSTFLUSH. If this is not true,
we will have to revert that commit IMHO.
This updated version adds "list_del_init(&rq->queuelist)" in flush rq
callback since the dm layer may submit request of a weird invalid format
(REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH), which causes double list_add
if without this "list_del_init(&rq->queuelist)". The weird invalid format
problem should be fixed in dm layer. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix kernel crash during resume
Currently during resume, QMI target memory is not properly handled, resulting
in kernel crash in case DMA remap is not supported:
BUG: Bad page state in process kworker/u16:54 pfn:36e80
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x36e80
page dumped because: nonzero _refcount
Call Trace:
bad_page
free_page_is_bad_report
__free_pages_ok
__free_pages
dma_direct_free
dma_free_attrs
ath12k_qmi_free_target_mem_chunk
ath12k_qmi_msg_mem_request_cb
The reason is:
Once ath12k module is loaded, firmware sends memory request to host. In case
DMA remap not supported, ath12k refuses the first request due to failure in
allocating with large segment size:
ath12k_pci 0000:04:00.0: qmi firmware request memory request
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 7077888
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 8454144
ath12k_pci 0000:04:00.0: qmi dma allocation failed (7077888 B type 1), will try later with small size
ath12k_pci 0000:04:00.0: qmi delays mem_request 2
ath12k_pci 0000:04:00.0: qmi firmware request memory request
Later firmware comes back with more but small segments and allocation
succeeds:
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 262144
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 65536
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
Now ath12k is working. If suspend is triggered, firmware will be reloaded
during resume. As same as before, firmware requests two large segments at
first. In ath12k_qmi_msg_mem_request_cb() segment count and size are
assigned:
ab->qmi.mem_seg_count == 2
ab->qmi.target_mem[0].size == 7077888
ab->qmi.target_mem[1].size == 8454144
Then allocation failed like before and ath12k_qmi_free_target_mem_chunk()
is called to free all allocated segments. Note the first segment is skipped
because its v.addr is cleared due to allocation failure:
chunk->v.addr = dma_alloc_coherent()
Also note that this leaks that segment because it has not been freed.
While freeing the second segment, a size of 8454144 is passed to
dma_free_coherent(). However remember that this segment is allocated at
the first time firmware is loaded, before suspend. So its real size is
524288, much smaller than 8454144. As a result kernel found we are freeing
some memory which is in use and thus cras
---truncated--- |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix the assign logic of iocb
commit 18ae8d12991b ("f2fs: show more DIO information in tracepoint")
introduces iocb field in 'f2fs_direct_IO_enter' trace event
And it only assigns the pointer and later it accesses its field
in trace print log.
Unable to handle kernel paging request at virtual address ffffffc04cef3d30
Mem abort info:
ESR = 0x96000007
EC = 0x25: DABT (current EL), IL = 32 bits
pc : trace_raw_output_f2fs_direct_IO_enter+0x54/0xa4
lr : trace_raw_output_f2fs_direct_IO_enter+0x2c/0xa4
sp : ffffffc0443cbbd0
x29: ffffffc0443cbbf0 x28: ffffff8935b120d0 x27: ffffff8935b12108
x26: ffffff8935b120f0 x25: ffffff8935b12100 x24: ffffff8935b110c0
x23: ffffff8935b10000 x22: ffffff88859a936c x21: ffffff88859a936c
x20: ffffff8935b110c0 x19: ffffff8935b10000 x18: ffffffc03b195060
x17: ffffff8935b11e76 x16: 00000000000000cc x15: ffffffef855c4f2c
x14: 0000000000000001 x13: 000000000000004e x12: ffff0000ffffff00
x11: ffffffef86c350d0 x10: 00000000000010c0 x9 : 000000000fe0002c
x8 : ffffffc04cef3d28 x7 : 7f7f7f7f7f7f7f7f x6 : 0000000002000000
x5 : ffffff8935b11e9a x4 : 0000000000006250 x3 : ffff0a00ffffff04
x2 : 0000000000000002 x1 : ffffffef86a0a31f x0 : ffffff8935b10000
Call trace:
trace_raw_output_f2fs_direct_IO_enter+0x54/0xa4
print_trace_fmt+0x9c/0x138
print_trace_line+0x154/0x254
tracing_read_pipe+0x21c/0x380
vfs_read+0x108/0x3ac
ksys_read+0x7c/0xec
__arm64_sys_read+0x20/0x30
invoke_syscall+0x60/0x150
el0_svc_common.llvm.1237943816091755067+0xb8/0xf8
do_el0_svc+0x28/0xa0
Fix it by copying the required variables for printing and while at
it fix the similar issue at some other places in the same file. |
| In the Linux kernel, the following vulnerability has been resolved:
mt76: mt7921: fix kernel panic by accessing unallocated eeprom.data
The MT7921 driver no longer uses eeprom.data, but the relevant code has not
been removed completely since
commit 16d98b548365 ("mt76: mt7921: rely on mcu_get_nic_capability").
This could result in potential invalid memory access.
To fix the kernel panic issue in mt7921, it is necessary to avoid accessing
unallocated eeprom.data which can lead to invalid memory access.
Furthermore, it is possible to entirely eliminate the
mt7921_mcu_parse_eeprom function and solely depend on
mt7921_mcu_parse_response to divide the RxD header.
[2.702735] BUG: kernel NULL pointer dereference, address: 0000000000000550
[2.702740] #PF: supervisor write access in kernel mode
[2.702741] #PF: error_code(0x0002) - not-present page
[2.702743] PGD 0 P4D 0
[2.702747] Oops: 0002 [#1] PREEMPT SMP NOPTI
[2.702755] RIP: 0010:mt7921_mcu_parse_response+0x147/0x170 [mt7921_common]
[2.702758] RSP: 0018:ffffae7c00fef828 EFLAGS: 00010286
[2.702760] RAX: ffffa367f57be024 RBX: ffffa367cc7bf500 RCX: 0000000000000000
[2.702762] RDX: 0000000000000550 RSI: 0000000000000000 RDI: ffffa367cc7bf500
[2.702763] RBP: ffffae7c00fef840 R08: ffffa367cb167000 R09: 0000000000000005
[2.702764] R10: 0000000000000000 R11: ffffffffc04702e4 R12: ffffa367e8329f40
[2.702766] R13: 0000000000000000 R14: 0000000000000001 R15: ffffa367e8329f40
[2.702768] FS: 000079ee6cf20c40(0000) GS:ffffa36b2f940000(0000) knlGS:0000000000000000
[2.702769] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[2.702775] CR2: 0000000000000550 CR3: 00000001233c6004 CR4: 0000000000770ee0
[2.702776] PKRU: 55555554
[2.702777] Call Trace:
[2.702782] mt76_mcu_skb_send_and_get_msg+0xc3/0x11e [mt76 <HASH:1bc4 5>]
[2.702785] mt7921_run_firmware+0x241/0x853 [mt7921_common <HASH:6a2f 6>]
[2.702789] mt7921e_mcu_init+0x2b/0x56 [mt7921e <HASH:d290 7>]
[2.702792] mt7921_register_device+0x2eb/0x5a5 [mt7921_common <HASH:6a2f 6>]
[2.702795] ? mt7921_irq_tasklet+0x1d4/0x1d4 [mt7921e <HASH:d290 7>]
[2.702797] mt7921_pci_probe+0x2d6/0x319 [mt7921e <HASH:d290 7>]
[2.702799] pci_device_probe+0x9f/0x12a |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix kernel crash due to null io->bio
We should return when io->bio is null before doing anything. Otherwise, panic.
BUG: kernel NULL pointer dereference, address: 0000000000000010
RIP: 0010:__submit_merged_write_cond+0x164/0x240 [f2fs]
Call Trace:
<TASK>
f2fs_submit_merged_write+0x1d/0x30 [f2fs]
commit_checkpoint+0x110/0x1e0 [f2fs]
f2fs_write_checkpoint+0x9f7/0xf00 [f2fs]
? __pfx_issue_checkpoint_thread+0x10/0x10 [f2fs]
__checkpoint_and_complete_reqs+0x84/0x190 [f2fs]
? preempt_count_add+0x82/0xc0
? __pfx_issue_checkpoint_thread+0x10/0x10 [f2fs]
issue_checkpoint_thread+0x4c/0xf0 [f2fs]
? __pfx_autoremove_wake_function+0x10/0x10
kthread+0xff/0x130
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2c/0x50
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
tracing/trigger: Fix to return error if failed to alloc snapshot
Fix register_snapshot_trigger() to return error code if it failed to
allocate a snapshot instead of 0 (success). Unless that, it will register
snapshot trigger without an error. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: ulpi: Fix debugfs directory leak
The ULPI per-device debugfs root is named after the ulpi device's
parent, but ulpi_unregister_interface tries to remove a debugfs
directory named after the ulpi device itself. This results in the
directory sticking around and preventing subsequent (deferred) probes
from succeeding. Change the directory name to match the ulpi device. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mm: Disallow vsyscall page read for copy_from_kernel_nofault()
When trying to use copy_from_kernel_nofault() to read vsyscall page
through a bpf program, the following oops was reported:
BUG: unable to handle page fault for address: ffffffffff600000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 3231067 P4D 3231067 PUD 3233067 PMD 3235067 PTE 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 20390 Comm: test_progs ...... 6.7.0+ #58
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ......
RIP: 0010:copy_from_kernel_nofault+0x6f/0x110
......
Call Trace:
<TASK>
? copy_from_kernel_nofault+0x6f/0x110
bpf_probe_read_kernel+0x1d/0x50
bpf_prog_2061065e56845f08_do_probe_read+0x51/0x8d
trace_call_bpf+0xc5/0x1c0
perf_call_bpf_enter.isra.0+0x69/0xb0
perf_syscall_enter+0x13e/0x200
syscall_trace_enter+0x188/0x1c0
do_syscall_64+0xb5/0xe0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
</TASK>
......
---[ end trace 0000000000000000 ]---
The oops is triggered when:
1) A bpf program uses bpf_probe_read_kernel() to read from the vsyscall
page and invokes copy_from_kernel_nofault() which in turn calls
__get_user_asm().
2) Because the vsyscall page address is not readable from kernel space,
a page fault exception is triggered accordingly.
3) handle_page_fault() considers the vsyscall page address as a user
space address instead of a kernel space address. This results in the
fix-up setup by bpf not being applied and a page_fault_oops() is invoked
due to SMAP.
Considering handle_page_fault() has already considered the vsyscall page
address as a userspace address, fix the problem by disallowing vsyscall
page read for copy_from_kernel_nofault(). |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "drm/amd: flush any delayed gfxoff on suspend entry"
commit ab4750332dbe ("drm/amdgpu/sdma5.2: add begin/end_use ring
callbacks") caused GFXOFF control to be used more heavily and the
codepath that was removed from commit 0dee72639533 ("drm/amd: flush any
delayed gfxoff on suspend entry") now can be exercised at suspend again.
Users report that by using GNOME to suspend the lockscreen trigger will
cause SDMA traffic and the system can deadlock.
This reverts commit 0dee726395333fea833eaaf838bc80962df886c8. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Fix active state requirement in PME polling
The commit noted in fixes added a bogus requirement that runtime PM managed
devices need to be in the RPM_ACTIVE state for PME polling. In fact, only
devices in low power states should be polled.
However there's still a requirement that the device config space must be
accessible, which has implications for both the current state of the polled
device and the parent bridge, when present. It's not sufficient to assume
the bridge remains in D0 and cases have been observed where the bridge
passes the D0 test, but the PM state indicates RPM_SUSPENDING and config
space of the polled device becomes inaccessible during pci_pme_wakeup().
Therefore, since the bridge is already effectively required to be in the
RPM_ACTIVE state, formalize this in the code and elevate the PM usage count
to maintain the state while polling the subordinate device.
This resolves a regression reported in the bugzilla below where a
Thunderbolt/USB4 hierarchy fails to scan for an attached NVMe endpoint
downstream of a bridge in a D3hot power state. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix possible store tearing in neigh_periodic_work()
While looking at a related syzbot report involving neigh_periodic_work(),
I found that I forgot to add an annotation when deleting an
RCU protected item from a list.
Readers use rcu_deference(*np), we need to use either
rcu_assign_pointer() or WRITE_ONCE() on writer side
to prevent store tearing.
I use rcu_assign_pointer() to have lockdep support,
this was the choice made in neigh_flush_dev(). |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: disallow timeout for anonymous sets
Never used from userspace, disallow these parameters. |