| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/amlogic: Replace smp_processor_id() with raw_smp_processor_id() in meson_ddr_pmu_create()
The Amlogic DDR PMU driver meson_ddr_pmu_create() function incorrectly uses
smp_processor_id(), which assumes disabled preemption. This leads to kernel
warnings during module loading because meson_ddr_pmu_create() can be called
in a preemptible context.
Following kernel warning and stack trace:
[ 31.745138] [ T2289] BUG: using smp_processor_id() in preemptible [00000000] code: (udev-worker)/2289
[ 31.745154] [ T2289] caller is debug_smp_processor_id+0x28/0x38
[ 31.745172] [ T2289] CPU: 4 UID: 0 PID: 2289 Comm: (udev-worker) Tainted: GW 6.14.0-0-MANJARO-ARM #1 59519addcbca6ba8de735e151fd7b9e97aac7ff0
[ 31.745181] [ T2289] Tainted: [W]=WARN
[ 31.745183] [ T2289] Hardware name: Hardkernel ODROID-N2Plus (DT)
[ 31.745188] [ T2289] Call trace:
[ 31.745191] [ T2289] show_stack+0x28/0x40 (C)
[ 31.745199] [ T2289] dump_stack_lvl+0x4c/0x198
[ 31.745205] [ T2289] dump_stack+0x20/0x50
[ 31.745209] [ T2289] check_preemption_disabled+0xec/0xf0
[ 31.745213] [ T2289] debug_smp_processor_id+0x28/0x38
[ 31.745216] [ T2289] meson_ddr_pmu_create+0x200/0x560 [meson_ddr_pmu_g12 8095101c49676ad138d9961e3eddaee10acca7bd]
[ 31.745237] [ T2289] g12_ddr_pmu_probe+0x20/0x38 [meson_ddr_pmu_g12 8095101c49676ad138d9961e3eddaee10acca7bd]
[ 31.745246] [ T2289] platform_probe+0x98/0xe0
[ 31.745254] [ T2289] really_probe+0x144/0x3f8
[ 31.745258] [ T2289] __driver_probe_device+0xb8/0x180
[ 31.745261] [ T2289] driver_probe_device+0x54/0x268
[ 31.745264] [ T2289] __driver_attach+0x11c/0x288
[ 31.745267] [ T2289] bus_for_each_dev+0xfc/0x160
[ 31.745274] [ T2289] driver_attach+0x34/0x50
[ 31.745277] [ T2289] bus_add_driver+0x160/0x2b0
[ 31.745281] [ T2289] driver_register+0x78/0x120
[ 31.745285] [ T2289] __platform_driver_register+0x30/0x48
[ 31.745288] [ T2289] init_module+0x30/0xfe0 [meson_ddr_pmu_g12 8095101c49676ad138d9961e3eddaee10acca7bd]
[ 31.745298] [ T2289] do_one_initcall+0x11c/0x438
[ 31.745303] [ T2289] do_init_module+0x68/0x228
[ 31.745311] [ T2289] load_module+0x118c/0x13a8
[ 31.745315] [ T2289] __arm64_sys_finit_module+0x274/0x390
[ 31.745320] [ T2289] invoke_syscall+0x74/0x108
[ 31.745326] [ T2289] el0_svc_common+0x90/0xf8
[ 31.745330] [ T2289] do_el0_svc+0x2c/0x48
[ 31.745333] [ T2289] el0_svc+0x60/0x150
[ 31.745337] [ T2289] el0t_64_sync_handler+0x80/0x118
[ 31.745341] [ T2289] el0t_64_sync+0x1b8/0x1c0
Changes replaces smp_processor_id() with raw_smp_processor_id() to
ensure safe CPU ID retrieval in preemptible contexts. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: smartpqi: Fix smp_processor_id() call trace for preemptible kernels
Correct kernel call trace when calling smp_processor_id() when called in
preemptible kernels by using raw_smp_processor_id().
smp_processor_id() checks to see if preemption is disabled and if not,
issue an error message followed by a call to dump_stack().
Brief example of call trace:
kernel: check_preemption_disabled: 436 callbacks suppressed
kernel: BUG: using smp_processor_id() in preemptible [00000000]
code: kworker/u1025:0/2354
kernel: caller is pqi_scsi_queue_command+0x183/0x310 [smartpqi]
kernel: CPU: 129 PID: 2354 Comm: kworker/u1025:0
kernel: ...
kernel: Workqueue: writeback wb_workfn (flush-253:0)
kernel: Call Trace:
kernel: <TASK>
kernel: dump_stack_lvl+0x34/0x48
kernel: check_preemption_disabled+0xdd/0xe0
kernel: pqi_scsi_queue_command+0x183/0x310 [smartpqi]
kernel: ... |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Do not include stack ptr register in precision backtracking bookkeeping
Yi Lai reported an issue ([1]) where the following warning appears
in kernel dmesg:
[ 60.643604] verifier backtracking bug
[ 60.643635] WARNING: CPU: 10 PID: 2315 at kernel/bpf/verifier.c:4302 __mark_chain_precision+0x3a6c/0x3e10
[ 60.648428] Modules linked in: bpf_testmod(OE)
[ 60.650471] CPU: 10 UID: 0 PID: 2315 Comm: test_progs Tainted: G OE 6.15.0-rc4-gef11287f8289-dirty #327 PREEMPT(full)
[ 60.654385] Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
[ 60.656682] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 60.660475] RIP: 0010:__mark_chain_precision+0x3a6c/0x3e10
[ 60.662814] Code: 5a 30 84 89 ea e8 c4 d9 01 00 80 3d 3e 7d d8 04 00 0f 85 60 fa ff ff c6 05 31 7d d8 04
01 48 c7 c7 00 58 30 84 e8 c4 06 a5 ff <0f> 0b e9 46 fa ff ff 48 ...
[ 60.668720] RSP: 0018:ffff888116cc7298 EFLAGS: 00010246
[ 60.671075] RAX: 54d70e82dfd31900 RBX: ffff888115b65e20 RCX: 0000000000000000
[ 60.673659] RDX: 0000000000000001 RSI: 0000000000000004 RDI: 00000000ffffffff
[ 60.676241] RBP: 0000000000000400 R08: ffff8881f6f23bd3 R09: 1ffff1103ede477a
[ 60.678787] R10: dffffc0000000000 R11: ffffed103ede477b R12: ffff888115b60ae8
[ 60.681420] R13: 1ffff11022b6cbc4 R14: 00000000fffffff2 R15: 0000000000000001
[ 60.684030] FS: 00007fc2aedd80c0(0000) GS:ffff88826fa8a000(0000) knlGS:0000000000000000
[ 60.686837] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 60.689027] CR2: 000056325369e000 CR3: 000000011088b002 CR4: 0000000000370ef0
[ 60.691623] Call Trace:
[ 60.692821] <TASK>
[ 60.693960] ? __pfx_verbose+0x10/0x10
[ 60.695656] ? __pfx_disasm_kfunc_name+0x10/0x10
[ 60.697495] check_cond_jmp_op+0x16f7/0x39b0
[ 60.699237] do_check+0x58fa/0xab10
...
Further analysis shows the warning is at line 4302 as below:
4294 /* static subprog call instruction, which
4295 * means that we are exiting current subprog,
4296 * so only r1-r5 could be still requested as
4297 * precise, r0 and r6-r10 or any stack slot in
4298 * the current frame should be zero by now
4299 */
4300 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4301 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
4302 WARN_ONCE(1, "verifier backtracking bug");
4303 return -EFAULT;
4304 }
With the below test (also in the next patch):
__used __naked static void __bpf_jmp_r10(void)
{
asm volatile (
"r2 = 2314885393468386424 ll;"
"goto +0;"
"if r2 <= r10 goto +3;"
"if r1 >= -1835016 goto +0;"
"if r2 <= 8 goto +0;"
"if r3 <= 0 goto +0;"
"exit;"
::: __clobber_all);
}
SEC("?raw_tp")
__naked void bpf_jmp_r10(void)
{
asm volatile (
"r3 = 0 ll;"
"call __bpf_jmp_r10;"
"r0 = 0;"
"exit;"
::: __clobber_all);
}
The following is the verifier failure log:
0: (18) r3 = 0x0 ; R3_w=0
2: (85) call pc+2
caller:
R10=fp0
callee:
frame1: R1=ctx() R3_w=0 R10=fp0
5: frame1: R1=ctx() R3_w=0 R10=fp0
; asm volatile (" \ @ verifier_precision.c:184
5: (18) r2 = 0x20202000256c6c78 ; frame1: R2_w=0x20202000256c6c78
7: (05) goto pc+0
8: (bd) if r2 <= r10 goto pc+3 ; frame1: R2_w=0x20202000256c6c78 R10=fp0
9: (35) if r1 >= 0xffe3fff8 goto pc+0 ; frame1: R1=ctx()
10: (b5) if r2 <= 0x8 goto pc+0
mark_precise: frame1: last_idx 10 first_idx 0 subseq_idx -1
mark_precise: frame1: regs=r2 stack= before 9: (35) if r1 >= 0xffe3fff8 goto pc+0
mark_precise: frame1: regs=r2 stack= before 8: (bd) if r2 <= r10 goto pc+3
mark_preci
---truncated--- |
| Under certain conditions, RSA operations performed by IBM Common Cryptographic Architecture (CCA) 7.0.0 through 7.5.36 may exhibit non-constant-time behavior. This could allow a remote attacker to obtain sensitive information using a timing-based attack. IBM X-Force ID: 257676. |
| IBM QRadar SIEM 7.5 is vulnerable to stored cross-site scripting. This vulnerability allows authenticated users to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. |
| IBM Common Cryptographic Architecture (CCA) 7.0.0 through 7.5.36 could allow a remote user to cause a denial of service due to incorrect data handling for certain types of AES operations. IBM X-Force ID: 270602. |
| IBM QRadar SIEM 7.5 could allow a privileged user to configure user management that would disclose unintended sensitive information across tenants. IBM X-Force ID: 284575. |
| IBM Storage Scale GUI 5.1.9.0 through 5.1.9.6 and 5.2.0.0 through 5.2.1.1 could allow a user to perform unauthorized actions after intercepting and modifying a csv file due to improper neutralization of formula elements. |
| IBM Storage Scale GUI 5.1.9.0 through 5.1.9.6 and 5.2.0.0 through 5.2.1.1
contains a local privilege escalation vulnerability. A malicious actor with command line access to the 'scalemgmt' user can elevate privileges to gain root access to the host operating system. |
| IBM Sterling Secure Proxy 6.0.0.0, 6.0.0.1, 6.0.0.2, 6.0.0.3, 6.1.0.0, and 6.2.0.0 could allow an unauthorized attacker to retrieve or alter sensitive information contents due to incorrect permission assignments. |
| IBM Sterling Secure Proxy 6.0.0.0, 6.0.0.1, 6.0.0.2, 6.0.0.3, 6.1.0.0, and 6.2.0.0 could allow a privileged user to inject commands into the underlying operating system due to improper validation of a specified type of input. |
| IBM QRadar SIEM 7.5 transmits sensitive or security-critical data in cleartext in a communication channel that could be obtained by an unauthorized actor using man in the middle techniques. |
| Due to length check, an attacker with privilege access on a Linux Nonsecure operating system can trigger a vulnerability and leak the secure memory from the Trusted Application
|
| An issue was discovered in the Linux kernel through 5.10.11. PI futexes have a kernel stack use-after-free during fault handling, allowing local users to execute code in the kernel, aka CID-34b1a1ce1458. |
| A flaw was found in the Linux kernel’s futex implementation. This flaw allows a local attacker to corrupt system memory or escalate their privileges when creating a futex on a filesystem that is about to be unmounted. The highest threat from this vulnerability is to confidentiality, integrity, as well as system availability. |
| IBM InfoSphere DataStage 11.7 is vulnerable to a command injection vulnerability due to improper neutralization of special elements. IBM X-Force ID: 236687. |
| IBM Security Guardium 10.5, 10.6, 11.0, 11.1, 11.2, 11.3, and 11.4 stores user credentials in plain clear text which can be read by a local privileged user. IBM X-Force ID: 215587. |
| A vulnerability in the web-based management interface of Cisco DNA Center Software could allow an unauthenticated, remote attacker to conduct a cross-site request forgery (CSRF) attack to manipulate an authenticated user into executing malicious actions without their awareness or consent. The vulnerability is due to insufficient CSRF protections for the web-based management interface of an affected device. An attacker could exploit this vulnerability by persuading a web-based management user to follow a specially crafted link. A successful exploit could allow the attacker to perform arbitrary actions on the device with the privileges of the authenticated user. These actions include modifying the device configuration, disconnecting the user's session, and executing Command Runner commands. |
| A vulnerability in the ISE Posture (System Scan) module of Cisco Secure Client for Linux could allow an authenticated, local attacker to elevate privileges on an affected device.
This vulnerability is due to the use of an uncontrolled search path element. An attacker could exploit this vulnerability by copying a malicious library file to a specific directory in the filesystem and persuading an administrator to restart a specific process. A successful exploit could allow the attacker to execute arbitrary code on an affected device with root privileges. |