| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc2: host: Fix dereference issue in DDMA completion flow.
Fixed variable dereference issue in DDMA completion flow. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: make sure that WRITTEN is set on all metadata blocks
We previously would call btrfs_check_leaf() if we had the check
integrity code enabled, which meant that we could only run the extended
leaf checks if we had WRITTEN set on the header flags.
This leaves a gap in our checking, because we could end up with
corruption on disk where WRITTEN isn't set on the leaf, and then the
extended leaf checks don't get run which we rely on to validate all of
the item pointers to make sure we don't access memory outside of the
extent buffer.
However, since 732fab95abe2 ("btrfs: check-integrity: remove
CONFIG_BTRFS_FS_CHECK_INTEGRITY option") we no longer call
btrfs_check_leaf() from btrfs_mark_buffer_dirty(), which means we only
ever call it on blocks that are being written out, and thus have WRITTEN
set, or that are being read in, which should have WRITTEN set.
Add checks to make sure we have WRITTEN set appropriately, and then make
sure __btrfs_check_leaf() always does the item checking. This will
protect us from file systems that have been corrupted and no longer have
WRITTEN set on some of the blocks.
This was hit on a crafted image tweaking the WRITTEN bit and reported by
KASAN as out-of-bound access in the eb accessors. The example is a dir
item at the end of an eb.
[2.042] BTRFS warning (device loop1): bad eb member start: ptr 0x3fff start 30572544 member offset 16410 size 2
[2.040] general protection fault, probably for non-canonical address 0xe0009d1000000003: 0000 [#1] PREEMPT SMP KASAN NOPTI
[2.537] KASAN: maybe wild-memory-access in range [0x0005088000000018-0x000508800000001f]
[2.729] CPU: 0 PID: 2587 Comm: mount Not tainted 6.8.2 #1
[2.729] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[2.621] RIP: 0010:btrfs_get_16+0x34b/0x6d0
[2.621] RSP: 0018:ffff88810871fab8 EFLAGS: 00000206
[2.621] RAX: 0000a11000000003 RBX: ffff888104ff8720 RCX: ffff88811b2288c0
[2.621] RDX: dffffc0000000000 RSI: ffffffff81dd8aca RDI: ffff88810871f748
[2.621] RBP: 000000000000401a R08: 0000000000000001 R09: ffffed10210e3ee9
[2.621] R10: ffff88810871f74f R11: 205d323430333737 R12: 000000000000001a
[2.621] R13: 000508800000001a R14: 1ffff110210e3f5d R15: ffffffff850011e8
[2.621] FS: 00007f56ea275840(0000) GS:ffff88811b200000(0000) knlGS:0000000000000000
[2.621] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[2.621] CR2: 00007febd13b75c0 CR3: 000000010bb50000 CR4: 00000000000006f0
[2.621] Call Trace:
[2.621] <TASK>
[2.621] ? show_regs+0x74/0x80
[2.621] ? die_addr+0x46/0xc0
[2.621] ? exc_general_protection+0x161/0x2a0
[2.621] ? asm_exc_general_protection+0x26/0x30
[2.621] ? btrfs_get_16+0x33a/0x6d0
[2.621] ? btrfs_get_16+0x34b/0x6d0
[2.621] ? btrfs_get_16+0x33a/0x6d0
[2.621] ? __pfx_btrfs_get_16+0x10/0x10
[2.621] ? __pfx_mutex_unlock+0x10/0x10
[2.621] btrfs_match_dir_item_name+0x101/0x1a0
[2.621] btrfs_lookup_dir_item+0x1f3/0x280
[2.621] ? __pfx_btrfs_lookup_dir_item+0x10/0x10
[2.621] btrfs_get_tree+0xd25/0x1910
[ copy more details from report ] |
| In the Linux kernel, the following vulnerability has been resolved:
cpu: Re-enable CPU mitigations by default for !X86 architectures
Rename x86's to CPU_MITIGATIONS, define it in generic code, and force it
on for all architectures exception x86. A recent commit to turn
mitigations off by default if SPECULATION_MITIGATIONS=n kinda sorta
missed that "cpu_mitigations" is completely generic, whereas
SPECULATION_MITIGATIONS is x86-specific.
Rename x86's SPECULATIVE_MITIGATIONS instead of keeping both and have it
select CPU_MITIGATIONS, as having two configs for the same thing is
unnecessary and confusing. This will also allow x86 to use the knob to
manage mitigations that aren't strictly related to speculative
execution.
Use another Kconfig to communicate to common code that CPU_MITIGATIONS
is already defined instead of having x86's menu depend on the common
CPU_MITIGATIONS. This allows keeping a single point of contact for all
of x86's mitigations, and it's not clear that other architectures *want*
to allow disabling mitigations at compile-time. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: sunxi-ng: h6: Reparent CPUX during PLL CPUX rate change
While PLL CPUX clock rate change when CPU is running from it works in
vast majority of cases, now and then it causes instability. This leads
to system crashes and other undefined behaviour. After a lot of testing
(30+ hours) while also doing a lot of frequency switches, we can't
observe any instability issues anymore when doing reparenting to stable
clock like 24 MHz oscillator. |
| In the Linux kernel, the following vulnerability has been resolved:
of: dynamic: Synchronize of_changeset_destroy() with the devlink removals
In the following sequence:
1) of_platform_depopulate()
2) of_overlay_remove()
During the step 1, devices are destroyed and devlinks are removed.
During the step 2, OF nodes are destroyed but
__of_changeset_entry_destroy() can raise warnings related to missing
of_node_put():
ERROR: memory leak, expected refcount 1 instead of 2 ...
Indeed, during the devlink removals performed at step 1, the removal
itself releasing the device (and the attached of_node) is done by a job
queued in a workqueue and so, it is done asynchronously with respect to
function calls.
When the warning is present, of_node_put() will be called but wrongly
too late from the workqueue job.
In order to be sure that any ongoing devlink removals are done before
the of_node destruction, synchronize the of_changeset_destroy() with the
devlink removals. |
| In the Linux kernel, the following vulnerability has been resolved:
bna: ensure the copied buf is NUL terminated
Currently, we allocate a nbytes-sized kernel buffer and copy nbytes from
userspace to that buffer. Later, we use sscanf on this buffer but we don't
ensure that the string is terminated inside the buffer, this can lead to
OOB read when using sscanf. Fix this issue by using memdup_user_nul
instead of memdup_user. |
| In the Linux kernel, the following vulnerability has been resolved:
nouveau/dmem: handle kcalloc() allocation failure
The kcalloc() in nouveau_dmem_evict_chunk() will return null if
the physical memory has run out. As a result, if we dereference
src_pfns, dst_pfns or dma_addrs, the null pointer dereference bugs
will happen.
Moreover, the GPU is going away. If the kcalloc() fails, we could not
evict all pages mapping a chunk. So this patch adds a __GFP_NOFAIL
flag in kcalloc().
Finally, as there is no need to have physically contiguous memory,
this patch switches kcalloc() to kvcalloc() in order to avoid
failing allocations. |
| In the Linux kernel, the following vulnerability has been resolved:
tee: optee: Fix kernel panic caused by incorrect error handling
The error path while failing to register devices on the TEE bus has a
bug leading to kernel panic as follows:
[ 15.398930] Unable to handle kernel paging request at virtual address ffff07ed00626d7c
[ 15.406913] Mem abort info:
[ 15.409722] ESR = 0x0000000096000005
[ 15.413490] EC = 0x25: DABT (current EL), IL = 32 bits
[ 15.418814] SET = 0, FnV = 0
[ 15.421878] EA = 0, S1PTW = 0
[ 15.425031] FSC = 0x05: level 1 translation fault
[ 15.429922] Data abort info:
[ 15.432813] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 15.438310] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 15.443372] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 15.448697] swapper pgtable: 4k pages, 48-bit VAs, pgdp=00000000d9e3e000
[ 15.455413] [ffff07ed00626d7c] pgd=1800000bffdf9003, p4d=1800000bffdf9003, pud=0000000000000000
[ 15.464146] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
Commit 7269cba53d90 ("tee: optee: Fix supplicant based device enumeration")
lead to the introduction of this bug. So fix it appropriately. |
| In the Linux kernel, the following vulnerability has been resolved:
netrom: Fix data-races around sysctl_net_busy_read
We need to protect the reader reading the sysctl value because the
value can be changed concurrently. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-frontends: avoid stack overflow warnings with clang
A previous patch worked around a KASAN issue in stv0367, now a similar
problem showed up with clang:
drivers/media/dvb-frontends/stv0367.c:1222:12: error: stack frame size (3624) exceeds limit (2048) in 'stv0367ter_set_frontend' [-Werror,-Wframe-larger-than]
1214 | static int stv0367ter_set_frontend(struct dvb_frontend *fe)
Rework the stv0367_writereg() function to be simpler and mark both
register access functions as noinline_for_stack so the temporary
i2c_msg structures do not get duplicated on the stack when KASAN_STACK
is enabled. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix failure to detect DAT corruption in btree and direct mappings
Patch series "nilfs2: fix kernel bug at submit_bh_wbc()".
This resolves a kernel BUG reported by syzbot. Since there are two
flaws involved, I've made each one a separate patch.
The first patch alone resolves the syzbot-reported bug, but I think
both fixes should be sent to stable, so I've tagged them as such.
This patch (of 2):
Syzbot has reported a kernel bug in submit_bh_wbc() when writing file data
to a nilfs2 file system whose metadata is corrupted.
There are two flaws involved in this issue.
The first flaw is that when nilfs_get_block() locates a data block using
btree or direct mapping, if the disk address translation routine
nilfs_dat_translate() fails with internal code -ENOENT due to DAT metadata
corruption, it can be passed back to nilfs_get_block(). This causes
nilfs_get_block() to misidentify an existing block as non-existent,
causing both data block lookup and insertion to fail inconsistently.
The second flaw is that nilfs_get_block() returns a successful status in
this inconsistent state. This causes the caller __block_write_begin_int()
or others to request a read even though the buffer is not mapped,
resulting in a BUG_ON check for the BH_Mapped flag in submit_bh_wbc()
failing.
This fixes the first issue by changing the return value to code -EINVAL
when a conversion using DAT fails with code -ENOENT, avoiding the
conflicting condition that leads to the kernel bug described above. Here,
code -EINVAL indicates that metadata corruption was detected during the
block lookup, which will be properly handled as a file system error and
converted to -EIO when passing through the nilfs2 bmap layer. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: once more fix the call oder in amdgpu_ttm_move() v2
This reverts drm/amdgpu: fix ftrace event amdgpu_bo_move always move
on same heap. The basic problem here is that after the move the old
location is simply not available any more.
Some fixes were suggested, but essentially we should call the move
notification before actually moving things because only this way we have
the correct order for DMA-buf and VM move notifications as well.
Also rework the statistic handling so that we don't update the eviction
counter before the move.
v2: add missing NULL check |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: process: fix kernel info leakage
thread_struct's s[12] may contain random kernel memory content, which
may be finally leaked to userspace. This is a security hole. Fix it
by clearing the s[12] array in thread_struct when fork.
As for kthread case, it's better to clear the s[12] array as well. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: Fix TASK_SIZE on 64-bit NOMMU
On NOMMU, userspace memory can come from anywhere in physical RAM. The
current definition of TASK_SIZE is wrong if any RAM exists above 4G,
causing spurious failures in the userspace access routines. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix kernel-infoleak in nilfs_ioctl_wrap_copy()
The ioctl helper function nilfs_ioctl_wrap_copy(), which exchanges a
metadata array to/from user space, may copy uninitialized buffer regions
to user space memory for read-only ioctl commands NILFS_IOCTL_GET_SUINFO
and NILFS_IOCTL_GET_CPINFO.
This can occur when the element size of the user space metadata given by
the v_size member of the argument nilfs_argv structure is larger than the
size of the metadata element (nilfs_suinfo structure or nilfs_cpinfo
structure) on the file system side.
KMSAN-enabled kernels detect this issue as follows:
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user
include/linux/instrumented.h:121 [inline]
BUG: KMSAN: kernel-infoleak in _copy_to_user+0xc0/0x100 lib/usercopy.c:33
instrument_copy_to_user include/linux/instrumented.h:121 [inline]
_copy_to_user+0xc0/0x100 lib/usercopy.c:33
copy_to_user include/linux/uaccess.h:169 [inline]
nilfs_ioctl_wrap_copy+0x6fa/0xc10 fs/nilfs2/ioctl.c:99
nilfs_ioctl_get_info fs/nilfs2/ioctl.c:1173 [inline]
nilfs_ioctl+0x2402/0x4450 fs/nilfs2/ioctl.c:1290
nilfs_compat_ioctl+0x1b8/0x200 fs/nilfs2/ioctl.c:1343
__do_compat_sys_ioctl fs/ioctl.c:968 [inline]
__se_compat_sys_ioctl+0x7dd/0x1000 fs/ioctl.c:910
__ia32_compat_sys_ioctl+0x93/0xd0 fs/ioctl.c:910
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178
do_fast_syscall_32+0x37/0x80 arch/x86/entry/common.c:203
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/common.c:246
entry_SYSENTER_compat_after_hwframe+0x70/0x82
Uninit was created at:
__alloc_pages+0x9f6/0xe90 mm/page_alloc.c:5572
alloc_pages+0xab0/0xd80 mm/mempolicy.c:2287
__get_free_pages+0x34/0xc0 mm/page_alloc.c:5599
nilfs_ioctl_wrap_copy+0x223/0xc10 fs/nilfs2/ioctl.c:74
nilfs_ioctl_get_info fs/nilfs2/ioctl.c:1173 [inline]
nilfs_ioctl+0x2402/0x4450 fs/nilfs2/ioctl.c:1290
nilfs_compat_ioctl+0x1b8/0x200 fs/nilfs2/ioctl.c:1343
__do_compat_sys_ioctl fs/ioctl.c:968 [inline]
__se_compat_sys_ioctl+0x7dd/0x1000 fs/ioctl.c:910
__ia32_compat_sys_ioctl+0x93/0xd0 fs/ioctl.c:910
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178
do_fast_syscall_32+0x37/0x80 arch/x86/entry/common.c:203
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/common.c:246
entry_SYSENTER_compat_after_hwframe+0x70/0x82
Bytes 16-127 of 3968 are uninitialized
...
This eliminates the leak issue by initializing the page allocated as
buffer using get_zeroed_page(). |
| In the Linux kernel, the following vulnerability has been resolved:
sfc: fix TX channel offset when using legacy interrupts
In legacy interrupt mode the tx_channel_offset was hardcoded to 1, but
that's not correct if efx_sepparate_tx_channels is false. In that case,
the offset is 0 because the tx queues are in the single existing channel
at index 0, together with the rx queue.
Without this fix, as soon as you try to send any traffic, it tries to
get the tx queues from an uninitialized channel getting these errors:
WARNING: CPU: 1 PID: 0 at drivers/net/ethernet/sfc/tx.c:540 efx_hard_start_xmit+0x12e/0x170 [sfc]
[...]
RIP: 0010:efx_hard_start_xmit+0x12e/0x170 [sfc]
[...]
Call Trace:
<IRQ>
dev_hard_start_xmit+0xd7/0x230
sch_direct_xmit+0x9f/0x360
__dev_queue_xmit+0x890/0xa40
[...]
BUG: unable to handle kernel NULL pointer dereference at 0000000000000020
[...]
RIP: 0010:efx_hard_start_xmit+0x153/0x170 [sfc]
[...]
Call Trace:
<IRQ>
dev_hard_start_xmit+0xd7/0x230
sch_direct_xmit+0x9f/0x360
__dev_queue_xmit+0x890/0xa40
[...] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/bridge: tpd12s015: Drop buggy __exit annotation for remove function
With tpd12s015_remove() marked with __exit this function is discarded
when the driver is compiled as a built-in. The result is that when the
driver unbinds there is no cleanup done which results in resource
leakage or worse. |
| In the Linux kernel before 4.8, usb_parse_endpoint in drivers/usb/core/config.c does not validate the wMaxPacketSize field of an endpoint descriptor. NOTE: This vulnerability only affects products that are no longer supported by the supplier. |
| In the Linux kernel, the following vulnerability has been resolved:
power: supply: bq27xxx-i2c: Do not free non existing IRQ
The bq27xxx i2c-client may not have an IRQ, in which case
client->irq will be 0. bq27xxx_battery_i2c_probe() already has
an if (client->irq) check wrapping the request_threaded_irq().
But bq27xxx_battery_i2c_remove() unconditionally calls
free_irq(client->irq) leading to:
[ 190.310742] ------------[ cut here ]------------
[ 190.310843] Trying to free already-free IRQ 0
[ 190.310861] WARNING: CPU: 2 PID: 1304 at kernel/irq/manage.c:1893 free_irq+0x1b8/0x310
Followed by a backtrace when unbinding the driver. Add
an if (client->irq) to bq27xxx_battery_i2c_remove() mirroring
probe() to fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-iocost: avoid out of bounds shift
UBSAN catches undefined behavior in blk-iocost, where sometimes
iocg->delay is shifted right by a number that is too large,
resulting in undefined behavior on some architectures.
[ 186.556576] ------------[ cut here ]------------
UBSAN: shift-out-of-bounds in block/blk-iocost.c:1366:23
shift exponent 64 is too large for 64-bit type 'u64' (aka 'unsigned long long')
CPU: 16 PID: 0 Comm: swapper/16 Tainted: G S E N 6.9.0-0_fbk700_debug_rc2_kbuilder_0_gc85af715cac0 #1
Hardware name: Quanta Twin Lakes MP/Twin Lakes Passive MP, BIOS F09_3A23 12/08/2020
Call Trace:
<IRQ>
dump_stack_lvl+0x8f/0xe0
__ubsan_handle_shift_out_of_bounds+0x22c/0x280
iocg_kick_delay+0x30b/0x310
ioc_timer_fn+0x2fb/0x1f80
__run_timer_base+0x1b6/0x250
...
Avoid that undefined behavior by simply taking the
"delay = 0" branch if the shift is too large.
I am not sure what the symptoms of an undefined value
delay will be, but I suspect it could be more than a
little annoying to debug. |