CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
habanalabs: fix UAF in export_dmabuf()
As soon as we'd inserted a file reference into descriptor table, another
thread could close it. That's fine for the case when all we are doing is
returning that descriptor to userland (it's a race, but it's a userland
race and there's nothing the kernel can do about it). However, if we
follow fd_install() with any kind of access to objects that would be
destroyed on close (be it the struct file itself or anything destroyed
by its ->release()), we have a UAF.
dma_buf_fd() is a combination of reserving a descriptor and fd_install().
habanalabs export_dmabuf() calls it and then proceeds to access the
objects destroyed on close. In particular, it grabs an extra reference to
another struct file that will be dropped as part of ->release() for ours;
that "will be" is actually "might have already been".
Fix that by reserving descriptor before anything else and do fd_install()
only when everything had been set up. As a side benefit, we no longer
have the failure exit with file already created, but reference to
underlying file (as well as ->dmabuf_export_cnt, etc.) not grabbed yet;
unlike dma_buf_fd(), fd_install() can't fail. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: ctnetlink: fix refcount leak on table dump
There is a reference count leak in ctnetlink_dump_table():
if (res < 0) {
nf_conntrack_get(&ct->ct_general); // HERE
cb->args[1] = (unsigned long)ct;
...
While its very unlikely, its possible that ct == last.
If this happens, then the refcount of ct was already incremented.
This 2nd increment is never undone.
This prevents the conntrack object from being released, which in turn
keeps prevents cnet->count from dropping back to 0.
This will then block the netns dismantle (or conntrack rmmod) as
nf_conntrack_cleanup_net_list() will wait forever.
This can be reproduced by running conntrack_resize.sh selftest in a loop.
It takes ~20 minutes for me on a preemptible kernel on average before
I see a runaway kworker spinning in nf_conntrack_cleanup_net_list.
One fix would to change this to:
if (res < 0) {
if (ct != last)
nf_conntrack_get(&ct->ct_general);
But this reference counting isn't needed in the first place.
We can just store a cookie value instead.
A followup patch will do the same for ctnetlink_exp_dump_table,
it looks to me as if this has the same problem and like
ctnetlink_dump_table, we only need a 'skip hint', not the actual
object so we can apply the same cookie strategy there as well. |
In the Linux kernel, the following vulnerability has been resolved:
net: hibmcge: fix rtnl deadlock issue
Currently, the hibmcge netdev acquires the rtnl_lock in
pci_error_handlers.reset_prepare() and releases it in
pci_error_handlers.reset_done().
However, in the PCI framework:
pci_reset_bus - __pci_reset_slot - pci_slot_save_and_disable_locked -
pci_dev_save_and_disable - err_handler->reset_prepare(dev);
In pci_slot_save_and_disable_locked():
list_for_each_entry(dev, &slot->bus->devices, bus_list) {
if (!dev->slot || dev->slot!= slot)
continue;
pci_dev_save_and_disable(dev);
if (dev->subordinate)
pci_bus_save_and_disable_locked(dev->subordinate);
}
This will iterate through all devices under the current bus and execute
err_handler->reset_prepare(), causing two devices of the hibmcge driver
to sequentially request the rtnl_lock, leading to a deadlock.
Since the driver now executes netif_device_detach()
before the reset process, it will not concurrently with
other netdev APIs, so there is no need to hold the rtnl_lock now.
Therefore, this patch removes the rtnl_lock during the reset process and
adjusts the position of HBG_NIC_STATE_RESETTING to ensure
that multiple resets are not executed concurrently. |
In the Linux kernel, the following vulnerability has been resolved:
net: hibmcge: fix the division by zero issue
When the network port is down, the queue is released, and ring->len is 0.
In debugfs, hbg_get_queue_used_num() will be called,
which may lead to a division by zero issue.
This patch adds a check, if ring->len is 0,
hbg_get_queue_used_num() directly returns 0. |
In the Linux kernel, the following vulnerability has been resolved:
sctp: linearize cloned gso packets in sctp_rcv
A cloned head skb still shares these frag skbs in fraglist with the
original head skb. It's not safe to access these frag skbs.
syzbot reported two use-of-uninitialized-memory bugs caused by this:
BUG: KMSAN: uninit-value in sctp_inq_pop+0x15b7/0x1920 net/sctp/inqueue.c:211
sctp_inq_pop+0x15b7/0x1920 net/sctp/inqueue.c:211
sctp_assoc_bh_rcv+0x1a7/0xc50 net/sctp/associola.c:998
sctp_inq_push+0x2ef/0x380 net/sctp/inqueue.c:88
sctp_backlog_rcv+0x397/0xdb0 net/sctp/input.c:331
sk_backlog_rcv+0x13b/0x420 include/net/sock.h:1122
__release_sock+0x1da/0x330 net/core/sock.c:3106
release_sock+0x6b/0x250 net/core/sock.c:3660
sctp_wait_for_connect+0x487/0x820 net/sctp/socket.c:9360
sctp_sendmsg_to_asoc+0x1ec1/0x1f00 net/sctp/socket.c:1885
sctp_sendmsg+0x32b9/0x4a80 net/sctp/socket.c:2031
inet_sendmsg+0x25a/0x280 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:718 [inline]
and
BUG: KMSAN: uninit-value in sctp_assoc_bh_rcv+0x34e/0xbc0 net/sctp/associola.c:987
sctp_assoc_bh_rcv+0x34e/0xbc0 net/sctp/associola.c:987
sctp_inq_push+0x2a3/0x350 net/sctp/inqueue.c:88
sctp_backlog_rcv+0x3c7/0xda0 net/sctp/input.c:331
sk_backlog_rcv+0x142/0x420 include/net/sock.h:1148
__release_sock+0x1d3/0x330 net/core/sock.c:3213
release_sock+0x6b/0x270 net/core/sock.c:3767
sctp_wait_for_connect+0x458/0x820 net/sctp/socket.c:9367
sctp_sendmsg_to_asoc+0x223a/0x2260 net/sctp/socket.c:1886
sctp_sendmsg+0x3910/0x49f0 net/sctp/socket.c:2032
inet_sendmsg+0x269/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:712 [inline]
This patch fixes it by linearizing cloned gso packets in sctp_rcv(). |
In the Linux kernel, the following vulnerability has been resolved:
net: kcm: Fix race condition in kcm_unattach()
syzbot found a race condition when kcm_unattach(psock)
and kcm_release(kcm) are executed at the same time.
kcm_unattach() is missing a check of the flag
kcm->tx_stopped before calling queue_work().
If the kcm has a reserved psock, kcm_unattach() might get executed
between cancel_work_sync() and unreserve_psock() in kcm_release(),
requeuing kcm->tx_work right before kcm gets freed in kcm_done().
Remove kcm->tx_stopped and replace it by the less
error-prone disable_work_sync(). |
In the Linux kernel, the following vulnerability has been resolved:
hfs: fix general protection fault in hfs_find_init()
The hfs_find_init() method can trigger the crash
if tree pointer is NULL:
[ 45.746290][ T9787] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000008: 0000 [#1] SMP KAI
[ 45.747287][ T9787] KASAN: null-ptr-deref in range [0x0000000000000040-0x0000000000000047]
[ 45.748716][ T9787] CPU: 2 UID: 0 PID: 9787 Comm: repro Not tainted 6.16.0-rc3 #10 PREEMPT(full)
[ 45.750250][ T9787] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 45.751983][ T9787] RIP: 0010:hfs_find_init+0x86/0x230
[ 45.752834][ T9787] Code: c1 ea 03 80 3c 02 00 0f 85 9a 01 00 00 4c 8d 6b 40 48 c7 45 18 00 00 00 00 48 b8 00 00 00 00 00 fc
[ 45.755574][ T9787] RSP: 0018:ffffc90015157668 EFLAGS: 00010202
[ 45.756432][ T9787] RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff819a4d09
[ 45.757457][ T9787] RDX: 0000000000000008 RSI: ffffffff819acd3a RDI: ffffc900151576e8
[ 45.758282][ T9787] RBP: ffffc900151576d0 R08: 0000000000000005 R09: 0000000000000000
[ 45.758943][ T9787] R10: 0000000080000000 R11: 0000000000000001 R12: 0000000000000004
[ 45.759619][ T9787] R13: 0000000000000040 R14: ffff88802c50814a R15: 0000000000000000
[ 45.760293][ T9787] FS: 00007ffb72734540(0000) GS:ffff8880cec64000(0000) knlGS:0000000000000000
[ 45.761050][ T9787] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 45.761606][ T9787] CR2: 00007f9bd8225000 CR3: 000000010979a000 CR4: 00000000000006f0
[ 45.762286][ T9787] Call Trace:
[ 45.762570][ T9787] <TASK>
[ 45.762824][ T9787] hfs_ext_read_extent+0x190/0x9d0
[ 45.763269][ T9787] ? submit_bio_noacct_nocheck+0x2dd/0xce0
[ 45.763766][ T9787] ? __pfx_hfs_ext_read_extent+0x10/0x10
[ 45.764250][ T9787] hfs_get_block+0x55f/0x830
[ 45.764646][ T9787] block_read_full_folio+0x36d/0x850
[ 45.765105][ T9787] ? __pfx_hfs_get_block+0x10/0x10
[ 45.765541][ T9787] ? const_folio_flags+0x5b/0x100
[ 45.765972][ T9787] ? __pfx_hfs_read_folio+0x10/0x10
[ 45.766415][ T9787] filemap_read_folio+0xbe/0x290
[ 45.766840][ T9787] ? __pfx_filemap_read_folio+0x10/0x10
[ 45.767325][ T9787] ? __filemap_get_folio+0x32b/0xbf0
[ 45.767780][ T9787] do_read_cache_folio+0x263/0x5c0
[ 45.768223][ T9787] ? __pfx_hfs_read_folio+0x10/0x10
[ 45.768666][ T9787] read_cache_page+0x5b/0x160
[ 45.769070][ T9787] hfs_btree_open+0x491/0x1740
[ 45.769481][ T9787] hfs_mdb_get+0x15e2/0x1fb0
[ 45.769877][ T9787] ? __pfx_hfs_mdb_get+0x10/0x10
[ 45.770316][ T9787] ? find_held_lock+0x2b/0x80
[ 45.770731][ T9787] ? lockdep_init_map_type+0x5c/0x280
[ 45.771200][ T9787] ? lockdep_init_map_type+0x5c/0x280
[ 45.771674][ T9787] hfs_fill_super+0x38e/0x720
[ 45.772092][ T9787] ? __pfx_hfs_fill_super+0x10/0x10
[ 45.772549][ T9787] ? snprintf+0xbe/0x100
[ 45.772931][ T9787] ? __pfx_snprintf+0x10/0x10
[ 45.773350][ T9787] ? do_raw_spin_lock+0x129/0x2b0
[ 45.773796][ T9787] ? find_held_lock+0x2b/0x80
[ 45.774215][ T9787] ? set_blocksize+0x40a/0x510
[ 45.774636][ T9787] ? sb_set_blocksize+0x176/0x1d0
[ 45.775087][ T9787] ? setup_bdev_super+0x369/0x730
[ 45.775533][ T9787] get_tree_bdev_flags+0x384/0x620
[ 45.775985][ T9787] ? __pfx_hfs_fill_super+0x10/0x10
[ 45.776453][ T9787] ? __pfx_get_tree_bdev_flags+0x10/0x10
[ 45.776950][ T9787] ? bpf_lsm_capable+0x9/0x10
[ 45.777365][ T9787] ? security_capable+0x80/0x260
[ 45.777803][ T9787] vfs_get_tree+0x8e/0x340
[ 45.778203][ T9787] path_mount+0x13de/0x2010
[ 45.778604][ T9787] ? kmem_cache_free+0x2b0/0x4c0
[ 45.779052][ T9787] ? __pfx_path_mount+0x10/0x10
[ 45.779480][ T9787] ? getname_flags.part.0+0x1c5/0x550
[ 45.779954][ T9787] ? putname+0x154/0x1a0
[ 45.780335][ T9787] __x64_sys_mount+0x27b/0x300
[ 45.780758][ T9787] ? __pfx___x64_sys_mount+0x10/0x10
[ 45.781232][ T9787]
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
hfs: fix slab-out-of-bounds in hfs_bnode_read()
This patch introduces is_bnode_offset_valid() method that checks
the requested offset value. Also, it introduces
check_and_correct_requested_length() method that checks and
correct the requested length (if it is necessary). These methods
are used in hfs_bnode_read(), hfs_bnode_write(), hfs_bnode_clear(),
hfs_bnode_copy(), and hfs_bnode_move() with the goal to prevent
the access out of allocated memory and triggering the crash. |
In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix slab-out-of-bounds in hfsplus_bnode_read()
The hfsplus_bnode_read() method can trigger the issue:
[ 174.852007][ T9784] ==================================================================
[ 174.852709][ T9784] BUG: KASAN: slab-out-of-bounds in hfsplus_bnode_read+0x2f4/0x360
[ 174.853412][ T9784] Read of size 8 at addr ffff88810b5fc6c0 by task repro/9784
[ 174.854059][ T9784]
[ 174.854272][ T9784] CPU: 1 UID: 0 PID: 9784 Comm: repro Not tainted 6.16.0-rc3 #7 PREEMPT(full)
[ 174.854281][ T9784] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 174.854286][ T9784] Call Trace:
[ 174.854289][ T9784] <TASK>
[ 174.854292][ T9784] dump_stack_lvl+0x10e/0x1f0
[ 174.854305][ T9784] print_report+0xd0/0x660
[ 174.854315][ T9784] ? __virt_addr_valid+0x81/0x610
[ 174.854323][ T9784] ? __phys_addr+0xe8/0x180
[ 174.854330][ T9784] ? hfsplus_bnode_read+0x2f4/0x360
[ 174.854337][ T9784] kasan_report+0xc6/0x100
[ 174.854346][ T9784] ? hfsplus_bnode_read+0x2f4/0x360
[ 174.854354][ T9784] hfsplus_bnode_read+0x2f4/0x360
[ 174.854362][ T9784] hfsplus_bnode_dump+0x2ec/0x380
[ 174.854370][ T9784] ? __pfx_hfsplus_bnode_dump+0x10/0x10
[ 174.854377][ T9784] ? hfsplus_bnode_write_u16+0x83/0xb0
[ 174.854385][ T9784] ? srcu_gp_start+0xd0/0x310
[ 174.854393][ T9784] ? __mark_inode_dirty+0x29e/0xe40
[ 174.854402][ T9784] hfsplus_brec_remove+0x3d2/0x4e0
[ 174.854411][ T9784] __hfsplus_delete_attr+0x290/0x3a0
[ 174.854419][ T9784] ? __pfx_hfs_find_1st_rec_by_cnid+0x10/0x10
[ 174.854427][ T9784] ? __pfx___hfsplus_delete_attr+0x10/0x10
[ 174.854436][ T9784] ? __asan_memset+0x23/0x50
[ 174.854450][ T9784] hfsplus_delete_all_attrs+0x262/0x320
[ 174.854459][ T9784] ? __pfx_hfsplus_delete_all_attrs+0x10/0x10
[ 174.854469][ T9784] ? rcu_is_watching+0x12/0xc0
[ 174.854476][ T9784] ? __mark_inode_dirty+0x29e/0xe40
[ 174.854483][ T9784] hfsplus_delete_cat+0x845/0xde0
[ 174.854493][ T9784] ? __pfx_hfsplus_delete_cat+0x10/0x10
[ 174.854507][ T9784] hfsplus_unlink+0x1ca/0x7c0
[ 174.854516][ T9784] ? __pfx_hfsplus_unlink+0x10/0x10
[ 174.854525][ T9784] ? down_write+0x148/0x200
[ 174.854532][ T9784] ? __pfx_down_write+0x10/0x10
[ 174.854540][ T9784] vfs_unlink+0x2fe/0x9b0
[ 174.854549][ T9784] do_unlinkat+0x490/0x670
[ 174.854557][ T9784] ? __pfx_do_unlinkat+0x10/0x10
[ 174.854565][ T9784] ? __might_fault+0xbc/0x130
[ 174.854576][ T9784] ? getname_flags.part.0+0x1c5/0x550
[ 174.854584][ T9784] __x64_sys_unlink+0xc5/0x110
[ 174.854592][ T9784] do_syscall_64+0xc9/0x480
[ 174.854600][ T9784] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 174.854608][ T9784] RIP: 0033:0x7f6fdf4c3167
[ 174.854614][ T9784] Code: f0 ff ff 73 01 c3 48 8b 0d 26 0d 0e 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 08
[ 174.854622][ T9784] RSP: 002b:00007ffcb948bca8 EFLAGS: 00000206 ORIG_RAX: 0000000000000057
[ 174.854630][ T9784] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f6fdf4c3167
[ 174.854636][ T9784] RDX: 00007ffcb948bcc0 RSI: 00007ffcb948bcc0 RDI: 00007ffcb948bd50
[ 174.854641][ T9784] RBP: 00007ffcb948cd90 R08: 0000000000000001 R09: 00007ffcb948bb40
[ 174.854645][ T9784] R10: 00007f6fdf564fc0 R11: 0000000000000206 R12: 0000561e1bc9c2d0
[ 174.854650][ T9784] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[ 174.854658][ T9784] </TASK>
[ 174.854661][ T9784]
[ 174.879281][ T9784] Allocated by task 9784:
[ 174.879664][ T9784] kasan_save_stack+0x20/0x40
[ 174.880082][ T9784] kasan_save_track+0x14/0x30
[ 174.880500][ T9784] __kasan_kmalloc+0xaa/0xb0
[ 174.880908][ T9784] __kmalloc_noprof+0x205/0x550
[ 174.881337][ T9784] __hfs_bnode_create+0x107/0x890
[ 174.881779][ T9784] hfsplus_bnode_find+0x2d0/0xd10
[ 174.882222][ T9784] hfsplus_brec_find+0x2b0/0x520
[ 174.882659][ T9784] hfsplus_delete_all_attrs+0x23b/0x3
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix slab-out-of-bounds read in hfsplus_uni2asc()
The hfsplus_readdir() method is capable to crash by calling
hfsplus_uni2asc():
[ 667.121659][ T9805] ==================================================================
[ 667.122651][ T9805] BUG: KASAN: slab-out-of-bounds in hfsplus_uni2asc+0x902/0xa10
[ 667.123627][ T9805] Read of size 2 at addr ffff88802592f40c by task repro/9805
[ 667.124578][ T9805]
[ 667.124876][ T9805] CPU: 3 UID: 0 PID: 9805 Comm: repro Not tainted 6.16.0-rc3 #1 PREEMPT(full)
[ 667.124886][ T9805] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 667.124890][ T9805] Call Trace:
[ 667.124893][ T9805] <TASK>
[ 667.124896][ T9805] dump_stack_lvl+0x10e/0x1f0
[ 667.124911][ T9805] print_report+0xd0/0x660
[ 667.124920][ T9805] ? __virt_addr_valid+0x81/0x610
[ 667.124928][ T9805] ? __phys_addr+0xe8/0x180
[ 667.124934][ T9805] ? hfsplus_uni2asc+0x902/0xa10
[ 667.124942][ T9805] kasan_report+0xc6/0x100
[ 667.124950][ T9805] ? hfsplus_uni2asc+0x902/0xa10
[ 667.124959][ T9805] hfsplus_uni2asc+0x902/0xa10
[ 667.124966][ T9805] ? hfsplus_bnode_read+0x14b/0x360
[ 667.124974][ T9805] hfsplus_readdir+0x845/0xfc0
[ 667.124984][ T9805] ? __pfx_hfsplus_readdir+0x10/0x10
[ 667.124994][ T9805] ? stack_trace_save+0x8e/0xc0
[ 667.125008][ T9805] ? iterate_dir+0x18b/0xb20
[ 667.125015][ T9805] ? trace_lock_acquire+0x85/0xd0
[ 667.125022][ T9805] ? lock_acquire+0x30/0x80
[ 667.125029][ T9805] ? iterate_dir+0x18b/0xb20
[ 667.125037][ T9805] ? down_read_killable+0x1ed/0x4c0
[ 667.125044][ T9805] ? putname+0x154/0x1a0
[ 667.125051][ T9805] ? __pfx_down_read_killable+0x10/0x10
[ 667.125058][ T9805] ? apparmor_file_permission+0x239/0x3e0
[ 667.125069][ T9805] iterate_dir+0x296/0xb20
[ 667.125076][ T9805] __x64_sys_getdents64+0x13c/0x2c0
[ 667.125084][ T9805] ? __pfx___x64_sys_getdents64+0x10/0x10
[ 667.125091][ T9805] ? __x64_sys_openat+0x141/0x200
[ 667.125126][ T9805] ? __pfx_filldir64+0x10/0x10
[ 667.125134][ T9805] ? do_user_addr_fault+0x7fe/0x12f0
[ 667.125143][ T9805] do_syscall_64+0xc9/0x480
[ 667.125151][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 667.125158][ T9805] RIP: 0033:0x7fa8753b2fc9
[ 667.125164][ T9805] Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 48
[ 667.125172][ T9805] RSP: 002b:00007ffe96f8e0f8 EFLAGS: 00000217 ORIG_RAX: 00000000000000d9
[ 667.125181][ T9805] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fa8753b2fc9
[ 667.125185][ T9805] RDX: 0000000000000400 RSI: 00002000000063c0 RDI: 0000000000000004
[ 667.125190][ T9805] RBP: 00007ffe96f8e110 R08: 00007ffe96f8e110 R09: 00007ffe96f8e110
[ 667.125195][ T9805] R10: 0000000000000000 R11: 0000000000000217 R12: 0000556b1e3b4260
[ 667.125199][ T9805] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[ 667.125207][ T9805] </TASK>
[ 667.125210][ T9805]
[ 667.145632][ T9805] Allocated by task 9805:
[ 667.145991][ T9805] kasan_save_stack+0x20/0x40
[ 667.146352][ T9805] kasan_save_track+0x14/0x30
[ 667.146717][ T9805] __kasan_kmalloc+0xaa/0xb0
[ 667.147065][ T9805] __kmalloc_noprof+0x205/0x550
[ 667.147448][ T9805] hfsplus_find_init+0x95/0x1f0
[ 667.147813][ T9805] hfsplus_readdir+0x220/0xfc0
[ 667.148174][ T9805] iterate_dir+0x296/0xb20
[ 667.148549][ T9805] __x64_sys_getdents64+0x13c/0x2c0
[ 667.148937][ T9805] do_syscall_64+0xc9/0x480
[ 667.149291][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 667.149809][ T9805]
[ 667.150030][ T9805] The buggy address belongs to the object at ffff88802592f000
[ 667.150030][ T9805] which belongs to the cache kmalloc-2k of size 2048
[ 667.151282][ T9805] The buggy address is located 0 bytes to the right of
[ 667.151282][ T9805] allocated 1036-byte region [ffff88802592f000, ffff88802592f40c)
[ 667.1
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
hfsplus: don't use BUG_ON() in hfsplus_create_attributes_file()
When the volume header contains erroneous values that do not reflect
the actual state of the filesystem, hfsplus_fill_super() assumes that
the attributes file is not yet created, which later results in hitting
BUG_ON() when hfsplus_create_attributes_file() is called. Replace this
BUG_ON() with -EIO error with a message to suggest running fsck tool. |
In the Linux kernel, the following vulnerability has been resolved:
smb/server: avoid deadlock when linking with ReplaceIfExists
If smb2_create_link() is called with ReplaceIfExists set and the name
does exist then a deadlock will happen.
ksmbd_vfs_kern_path_locked() will return with success and the parent
directory will be locked. ksmbd_vfs_remove_file() will then remove the
file. ksmbd_vfs_link() will then be called while the parent is still
locked. It will try to lock the same parent and will deadlock.
This patch moves the ksmbd_vfs_kern_path_unlock() call to *before*
ksmbd_vfs_link() and then simplifies the code, removing the file_present
flag variable. |
In the Linux kernel, the following vulnerability has been resolved:
gfs2: Validate i_depth for exhash directories
A fuzzer test introduced corruption that ends up with a depth of 0 in
dir_e_read(), causing an undefined shift by 32 at:
index = hash >> (32 - dip->i_depth);
As calculated in an open-coded way in dir_make_exhash(), the minimum
depth for an exhash directory is ilog2(sdp->sd_hash_ptrs) and 0 is
invalid as sdp->sd_hash_ptrs is fixed as sdp->bsize / 16 at mount time.
So we can avoid the undefined behaviour by checking for depth values
lower than the minimum in gfs2_dinode_in(). Values greater than the
maximum are already being checked for there.
Also switch the calculation in dir_make_exhash() to use ilog2() to
clarify how the depth is calculated.
Tested with the syzkaller repro.c and xfstests '-g quick'. |
In the Linux kernel, the following vulnerability has been resolved:
loop: Avoid updating block size under exclusive owner
Syzbot came up with a reproducer where a loop device block size is
changed underneath a mounted filesystem. This causes a mismatch between
the block device block size and the block size stored in the superblock
causing confusion in various places such as fs/buffer.c. The particular
issue triggered by syzbot was a warning in __getblk_slow() due to
requested buffer size not matching block device block size.
Fix the problem by getting exclusive hold of the loop device to change
its block size. This fails if somebody (such as filesystem) has already
an exclusive ownership of the block device and thus prevents modifying
the loop device under some exclusive owner which doesn't expect it. |
In the Linux kernel, the following vulnerability has been resolved:
drbd: add missing kref_get in handle_write_conflicts
With `two-primaries` enabled, DRBD tries to detect "concurrent" writes
and handle write conflicts, so that even if you write to the same sector
simultaneously on both nodes, they end up with the identical data once
the writes are completed.
In handling "superseeded" writes, we forgot a kref_get,
resulting in a premature drbd_destroy_device and use after free,
and further to kernel crashes with symptoms.
Relevance: No one should use DRBD as a random data generator, and apparently
all users of "two-primaries" handle concurrent writes correctly on layer up.
That is cluster file systems use some distributed lock manager,
and live migration in virtualization environments stops writes on one node
before starting writes on the other node.
Which means that other than for "test cases",
this code path is never taken in real life.
FYI, in DRBD 9, things are handled differently nowadays. We still detect
"write conflicts", but no longer try to be smart about them.
We decided to disconnect hard instead: upper layers must not submit concurrent
writes. If they do, that's their fault. |
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Add sanity check for file name
The length of the file name should be smaller than the directory entry size. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: core: Check for rtd == NULL in snd_soc_remove_pcm_runtime()
snd_soc_remove_pcm_runtime() might be called with rtd == NULL which will
leads to null pointer dereference.
This was reproduced with topology loading and marking a link as ignore
due to missing hardware component on the system.
On module removal the soc_tplg_remove_link() would call
snd_soc_remove_pcm_runtime() with rtd == NULL since the link was ignored,
no runtime was created. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: fix null pointer access
Writing a string without delimiters (' ', '\n', '\0') to the under
gpu_od/fan_ctrl sysfs or pp_power_profile_mode for the CUSTOM profile
will result in a null pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
rcu/nocb: Fix possible invalid rdp's->nocb_cb_kthread pointer access
In the preparation stage of CPU online, if the corresponding
the rdp's->nocb_cb_kthread does not exist, will be created,
there is a situation where the rdp's rcuop kthreads creation fails,
and then de-offload this CPU's rdp, does not assign this CPU's
rdp->nocb_cb_kthread pointer, but this rdp's->nocb_gp_rdp and
rdp's->rdp_gp->nocb_gp_kthread is still valid.
This will cause the subsequent re-offload operation of this offline
CPU, which will pass the conditional check and the kthread_unpark()
will access invalid rdp's->nocb_cb_kthread pointer.
This commit therefore use rdp's->nocb_gp_kthread instead of
rdp_gp's->nocb_gp_kthread for safety check. |
In the Linux kernel, the following vulnerability has been resolved:
fbdev: fix potential buffer overflow in do_register_framebuffer()
The current implementation may lead to buffer overflow when:
1. Unregistration creates NULL gaps in registered_fb[]
2. All array slots become occupied despite num_registered_fb < FB_MAX
3. The registration loop exceeds array bounds
Add boundary check to prevent registered_fb[FB_MAX] access. |