CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
media: cx88: Fix a null-ptr-deref bug in buffer_prepare()
When the driver calls cx88_risc_buffer() to prepare the buffer, the
function call may fail, resulting in a empty buffer and null-ptr-deref
later in buffer_queue().
The following log can reveal it:
[ 41.822762] general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI
[ 41.824488] KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
[ 41.828027] RIP: 0010:buffer_queue+0xc2/0x500
[ 41.836311] Call Trace:
[ 41.836945] __enqueue_in_driver+0x141/0x360
[ 41.837262] vb2_start_streaming+0x62/0x4a0
[ 41.838216] vb2_core_streamon+0x1da/0x2c0
[ 41.838516] __vb2_init_fileio+0x981/0xbc0
[ 41.839141] __vb2_perform_fileio+0xbf9/0x1120
[ 41.840072] vb2_fop_read+0x20e/0x400
[ 41.840346] v4l2_read+0x215/0x290
[ 41.840603] vfs_read+0x162/0x4c0
Fix this by checking the return value of cx88_risc_buffer()
[hverkuil: fix coding style issues] |
In the Linux kernel, the following vulnerability has been resolved:
skbuff: Account for tail adjustment during pull operations
Extending the tail can have some unexpected side effects if a program uses
a helper like BPF_FUNC_skb_pull_data to read partial content beyond the
head skb headlen when all the skbs in the gso frag_list are linear with no
head_frag -
kernel BUG at net/core/skbuff.c:4219!
pc : skb_segment+0xcf4/0xd2c
lr : skb_segment+0x63c/0xd2c
Call trace:
skb_segment+0xcf4/0xd2c
__udp_gso_segment+0xa4/0x544
udp4_ufo_fragment+0x184/0x1c0
inet_gso_segment+0x16c/0x3a4
skb_mac_gso_segment+0xd4/0x1b0
__skb_gso_segment+0xcc/0x12c
udp_rcv_segment+0x54/0x16c
udp_queue_rcv_skb+0x78/0x144
udp_unicast_rcv_skb+0x8c/0xa4
__udp4_lib_rcv+0x490/0x68c
udp_rcv+0x20/0x30
ip_protocol_deliver_rcu+0x1b0/0x33c
ip_local_deliver+0xd8/0x1f0
ip_rcv+0x98/0x1a4
deliver_ptype_list_skb+0x98/0x1ec
__netif_receive_skb_core+0x978/0xc60
Fix this by marking these skbs as GSO_DODGY so segmentation can handle
the tail updates accordingly. |
In the Linux kernel, the following vulnerability has been resolved:
drm/vkms: Fix null-ptr-deref in vkms_release()
A null-ptr-deref is triggered when it tries to destroy the workqueue in
vkms->output.composer_workq in vkms_release().
KASAN: null-ptr-deref in range [0x0000000000000118-0x000000000000011f]
CPU: 5 PID: 17193 Comm: modprobe Not tainted 6.0.0-11331-gd465bff130bf #24
RIP: 0010:destroy_workqueue+0x2f/0x710
...
Call Trace:
<TASK>
? vkms_config_debugfs_init+0x50/0x50 [vkms]
__devm_drm_dev_alloc+0x15a/0x1c0 [drm]
vkms_init+0x245/0x1000 [vkms]
do_one_initcall+0xd0/0x4f0
do_init_module+0x1a4/0x680
load_module+0x6249/0x7110
__do_sys_finit_module+0x140/0x200
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
The reason is that an OOM happened which triggers the destroy of the
workqueue, however, the workqueue is alloced in the later process,
thus a null-ptr-deref happened. A simple call graph is shown as below:
vkms_init()
vkms_create()
devm_drm_dev_alloc()
__devm_drm_dev_alloc()
devm_drm_dev_init()
devm_add_action_or_reset()
devm_add_action() # an error happened
devm_drm_dev_init_release()
drm_dev_put()
kref_put()
drm_dev_release()
vkms_release()
destroy_workqueue() # null-ptr-deref happened
vkms_modeset_init()
vkms_output_init()
vkms_crtc_init() # where the workqueue get allocated
Fix this by checking if composer_workq is NULL before passing it to
the destroy_workqueue() in vkms_release(). |
In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix memory leak when build ntlmssp negotiate blob failed
There is a memory leak when mount cifs:
unreferenced object 0xffff888166059600 (size 448):
comm "mount.cifs", pid 51391, jiffies 4295596373 (age 330.596s)
hex dump (first 32 bytes):
fe 53 4d 42 40 00 00 00 00 00 00 00 01 00 82 00 .SMB@...........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000060609a61>] mempool_alloc+0xe1/0x260
[<00000000adfa6c63>] cifs_small_buf_get+0x24/0x60
[<00000000ebb404c7>] __smb2_plain_req_init+0x32/0x460
[<00000000bcf875b4>] SMB2_sess_alloc_buffer+0xa4/0x3f0
[<00000000753a2987>] SMB2_sess_auth_rawntlmssp_negotiate+0xf5/0x480
[<00000000f0c1f4f9>] SMB2_sess_setup+0x253/0x410
[<00000000a8b83303>] cifs_setup_session+0x18f/0x4c0
[<00000000854bd16d>] cifs_get_smb_ses+0xae7/0x13c0
[<000000006cbc43d9>] mount_get_conns+0x7a/0x730
[<000000005922d816>] cifs_mount+0x103/0xd10
[<00000000e33def3b>] cifs_smb3_do_mount+0x1dd/0xc90
[<0000000078034979>] smb3_get_tree+0x1d5/0x300
[<000000004371f980>] vfs_get_tree+0x41/0xf0
[<00000000b670d8a7>] path_mount+0x9b3/0xdd0
[<000000005e839a7d>] __x64_sys_mount+0x190/0x1d0
[<000000009404c3b9>] do_syscall_64+0x35/0x80
When build ntlmssp negotiate blob failed, the session setup request
should be freed. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix BUG_ON condition in btrfs_cancel_balance
Pausing and canceling balance can race to interrupt balance lead to BUG_ON
panic in btrfs_cancel_balance. The BUG_ON condition in btrfs_cancel_balance
does not take this race scenario into account.
However, the race condition has no other side effects. We can fix that.
Reproducing it with panic trace like this:
kernel BUG at fs/btrfs/volumes.c:4618!
RIP: 0010:btrfs_cancel_balance+0x5cf/0x6a0
Call Trace:
<TASK>
? do_nanosleep+0x60/0x120
? hrtimer_nanosleep+0xb7/0x1a0
? sched_core_clone_cookie+0x70/0x70
btrfs_ioctl_balance_ctl+0x55/0x70
btrfs_ioctl+0xa46/0xd20
__x64_sys_ioctl+0x7d/0xa0
do_syscall_64+0x38/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Race scenario as follows:
> mutex_unlock(&fs_info->balance_mutex);
> --------------------
> .......issue pause and cancel req in another thread
> --------------------
> ret = __btrfs_balance(fs_info);
>
> mutex_lock(&fs_info->balance_mutex);
> if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
> btrfs_info(fs_info, "balance: paused");
> btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
> } |
In the Linux kernel, the following vulnerability has been resolved:
drm/sched: Check scheduler work queue before calling timeout handling
During an IGT GPU reset test we see again oops despite of
commit 0c8c901aaaebc9 (drm/sched: Check scheduler ready before calling
timeout handling).
It uses ready condition whether to call drm_sched_fault which unwind
the TDR leads to GPU reset.
However it looks the ready condition is overloaded with other meanings,
for example, for the following stack is related GPU reset :
0 gfx_v9_0_cp_gfx_start
1 gfx_v9_0_cp_gfx_resume
2 gfx_v9_0_cp_resume
3 gfx_v9_0_hw_init
4 gfx_v9_0_resume
5 amdgpu_device_ip_resume_phase2
does the following:
/* start the ring */
gfx_v9_0_cp_gfx_start(adev);
ring->sched.ready = true;
The same approach is for other ASICs as well :
gfx_v8_0_cp_gfx_resume
gfx_v10_0_kiq_resume, etc...
As a result, our GPU reset test causes GPU fault which calls unconditionally gfx_v9_0_fault
and then drm_sched_fault. However now it depends on whether the interrupt service routine
drm_sched_fault is executed after gfx_v9_0_cp_gfx_start is completed which sets the ready
field of the scheduler to true even for uninitialized schedulers and causes oops vs
no fault or when ISR drm_sched_fault is completed prior gfx_v9_0_cp_gfx_start and
NULL pointer dereference does not occur.
Use the field timeout_wq to prevent oops for uninitialized schedulers.
The field could be initialized by the work queue of resetting the domain.
v1: Corrections to commit message (Luben) |
In the Linux kernel, the following vulnerability has been resolved:
skbuff: skb_segment, Call zero copy functions before using skbuff frags
Commit bf5c25d60861 ("skbuff: in skb_segment, call zerocopy functions
once per nskb") added the call to zero copy functions in skb_segment().
The change introduced a bug in skb_segment() because skb_orphan_frags()
may possibly change the number of fragments or allocate new fragments
altogether leaving nrfrags and frag to point to the old values. This can
cause a panic with stacktrace like the one below.
[ 193.894380] BUG: kernel NULL pointer dereference, address: 00000000000000bc
[ 193.895273] CPU: 13 PID: 18164 Comm: vh-net-17428 Kdump: loaded Tainted: G O 5.15.123+ #26
[ 193.903919] RIP: 0010:skb_segment+0xb0e/0x12f0
[ 194.021892] Call Trace:
[ 194.027422] <TASK>
[ 194.072861] tcp_gso_segment+0x107/0x540
[ 194.082031] inet_gso_segment+0x15c/0x3d0
[ 194.090783] skb_mac_gso_segment+0x9f/0x110
[ 194.095016] __skb_gso_segment+0xc1/0x190
[ 194.103131] netem_enqueue+0x290/0xb10 [sch_netem]
[ 194.107071] dev_qdisc_enqueue+0x16/0x70
[ 194.110884] __dev_queue_xmit+0x63b/0xb30
[ 194.121670] bond_start_xmit+0x159/0x380 [bonding]
[ 194.128506] dev_hard_start_xmit+0xc3/0x1e0
[ 194.131787] __dev_queue_xmit+0x8a0/0xb30
[ 194.138225] macvlan_start_xmit+0x4f/0x100 [macvlan]
[ 194.141477] dev_hard_start_xmit+0xc3/0x1e0
[ 194.144622] sch_direct_xmit+0xe3/0x280
[ 194.147748] __dev_queue_xmit+0x54a/0xb30
[ 194.154131] tap_get_user+0x2a8/0x9c0 [tap]
[ 194.157358] tap_sendmsg+0x52/0x8e0 [tap]
[ 194.167049] handle_tx_zerocopy+0x14e/0x4c0 [vhost_net]
[ 194.173631] handle_tx+0xcd/0xe0 [vhost_net]
[ 194.176959] vhost_worker+0x76/0xb0 [vhost]
[ 194.183667] kthread+0x118/0x140
[ 194.190358] ret_from_fork+0x1f/0x30
[ 194.193670] </TASK>
In this case calling skb_orphan_frags() updated nr_frags leaving nrfrags
local variable in skb_segment() stale. This resulted in the code hitting
i >= nrfrags prematurely and trying to move to next frag_skb using
list_skb pointer, which was NULL, and caused kernel panic. Move the call
to zero copy functions before using frags and nr_frags. |
A vulnerability has been found in itsourcecode Student Information System 1.0. The affected element is an unknown function of the file /leveledit1.php. Such manipulation of the argument level_id leads to sql injection. The attack may be performed from remote. The exploit has been disclosed to the public and may be used. |
A vulnerability was found in SourceCodester Online Exam Form Submission 1.0. This affects an unknown part of the file /index.php. The manipulation of the argument usn results in sql injection. The attack can be launched remotely. The exploit has been made public and could be used. |
A vulnerability was determined in kidaze CourseSelectionSystem up to 42cd892b40a18d50bd4ed1905fa89f939173a464. This vulnerability affects unknown code of the file /Profilers/PriProfile/COUNT2.php. This manipulation of the argument cname causes sql injection. The attack may be initiated remotely. This product uses a rolling release model to deliver continuous updates. As a result, specific version information for affected or updated releases is not available. |
A vulnerability was identified in SourceCodester Pet Grooming Management Software 1.0. This issue affects some unknown processing of the file /admin/search_product.php. Such manipulation of the argument group_id leads to sql injection. The attack may be launched remotely. The exploit is publicly available and might be used. |
Substance3D - Stager versions 3.1.3 and earlier are affected by an out-of-bounds read vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to disclose sensitive information. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
Substance3D - Stager versions 3.1.3 and earlier are affected by an out-of-bounds read vulnerability when parsing a crafted file, which could result in a read past the end of an allocated memory structure. An attacker could leverage this vulnerability to execute code in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
A vulnerability was found in poco up to 1.14.1. It has been rated as problematic. Affected by this issue is the function MultipartInputStream of the file Net/src/MultipartReader.cpp. The manipulation leads to null pointer dereference. The attack needs to be approached locally. The exploit has been disclosed to the public and may be used. Upgrading to version 1.14.2 is able to address this issue. The patch is identified as 6f2f85913c191ab9ddfb8fae781f5d66afccf3bf. It is recommended to upgrade the affected component. |
Out-of-bounds data read vulnerability in the authorization module
Impact: Successful exploitation of this vulnerability may affect service confidentiality. |
Process residence vulnerability in abnormal scenarios in the print module
Impact: Successful exploitation of this vulnerability may affect availability. |
The server-side backend for Adform Site Tracking before 2025-08-28 allows attackers to inject HTML or execute arbitrary code via cookie hijacking. NOTE: a customer does not need to take any action to update locally installed software (such as Adform Site Tracking 1.1). |
A vulnerability classified as problematic was found in vstakhov libucl up to 0.9.2. Affected by this vulnerability is the function ucl_parse_multiline_string of the file src/ucl_parser.c. The manipulation leads to heap-based buffer overflow. The attack needs to be approached locally. The exploit has been disclosed to the public and may be used. |
A vulnerability exists in NeuVector versions up to and including 5.4.5, where a fixed string is used as the default password for the built-in `admin` account. If this password is not changed immediately after deployment, any workload with network access within the cluster could use the default credentials to obtain an authentication token. This token can then be used to perform any operation via NeuVector APIs. |
Hidden functionality issue exists in WN-7D36QR and WN-7D36QR/UE. If this vulnerability is exploited, SSH may be enabled by a remote authenticated attacker. |